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Description

symmetry performs asymptotic symmetry and marginal homogeneity tests, as well as an exact
symmetry test on K ×K tables where there is a 1-to-1 matching of cases and controls (nonindepen-
dence). This testing is used to analyze matched-pair case–control data with multiple discrete levels
of the exposure (outcome) variable. In genetics, the test is known as the transmission/disequilibrium
test (TDT) and is used to test the association between transmitted and nontransmitted parental marker
alleles to an affected child (Spieldman, McGinnis, and Ewens 1993). For 2× 2 tables, the asymptotic
test statistics reduce to the McNemar test statistic, and the exact symmetry test produces an exact
McNemar test; see [R] Epitab. For many exposure variables, symmetry can optionally perform a
test for linear trend in the log relative risk.

symmetry expects the data to be in the wide format; that is, each observation contains the matched
case and control values in variables casevar and controlvar. Variables can be numeric or string.

symmi is the immediate form of symmetry. The symmi command uses the values specified on
the command line; rows are separated by ‘\’, and options are the same as for symmetry. See
[U] 19 Immediate commands for a general introduction to immediate commands.

Quick start
Symmetry and marginal homogeneity tests for 1-to-1 matched case–control studies

symmetry case control

Same as above
symmetry control case

Exact test of table symmetry
symmetry case control, exact

Report the contribution from each off-diagonal pair to the overall χ2-statistic
symmetry control case, contrib

Test for a linear trend in the log of the relative risk
symmetry control case, trend

Request marginal homogeneity statistics that do not require the inversion of the variance–covariance
matrix

symmetry case control, mh

Using frequency weight variable wvar

symmetry case control [fweight=wvar]
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Menu
symmetry

Statistics > Epidemiology and related > Other > Symmetry and marginal homogeneity test

symmi

Statistics > Epidemiology and related > Other > Symmetry and marginal homogeneity test calculator

Syntax

Symmetry and marginal homogeneity tests

symmetry casevar controlvar
[

if
] [

in
] [

weight
] [

, options
]

Immediate form of symmetry and marginal homogeneity tests

symmi #11 #12 [...] \ #21 #22 [...] [\...]
[

if
] [

in
] [

, options
]

options Description

Main

notable suppress output of contingency table
contrib report contribution of each off-diagonal cell pair
exact perform exact test of table symmetry
mh perform two marginal homogeneity tests
trend perform a test for linear trend in the (log) relative risk (RR)
cc use continuity correction when calculating test for linear trend

collect is allowed with symmetry; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

notable suppresses the output of the contingency table. By default, symmetry displays the n× n
contingency table at the top of the output.

contrib reports the contribution of each off-diagonal cell pair to the overall symmetry χ2.

exact performs an exact test of table symmetry. This option is recommended for sparse tables.
CAUTION: The exact test requires substantial amounts of time and memory for large tables.

mh performs two marginal homogeneity tests that do not require the inversion of the variance–covariance
matrix.

By default, symmetry produces the Stuart–Maxwell test statistic, which requires the inversion of the
nondiagonal variance–covariance matrix, V. When the table is sparse, the matrix may not be of full
rank, and then the command substitutes a generalized inverse V∗ for V−1. mh calculates optional
marginal homogeneity statistics that do not require the inversion of the variance–covariance matrix.
These tests may be preferred in certain situations. See Methods and formulas and Bickeböller and
Clerget-Darpoux (1995) for details on these test statistics.

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
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https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
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trend performs a test for linear trend in the (log) relative risk (RR). This option is allowed only for
numeric exposure (outcome) variables, and its use should be restricted to measurements on the
ordinal or the interval scales.

cc specifies that the continuity correction be used when calculating the test for linear trend. This
correction should be specified only when the levels of the exposure variable are equally spaced.

Remarks and examples stata.com

symmetry and symmi may be used to analyze 1-to-1 matched case–control data with multiple
discrete levels of the exposure (outcome) variable.

Example 1

Consider a survey of 344 individuals (BMDP 1990, 267–270) who were asked in October 1986
whether they agreed with President Reagan’s handling of foreign affairs. In January 1987, after the
Iran-Contra affair became public, these same individuals were surveyed again and asked the same
question. We would like to know if public opinion changed over this period.

We first describe the dataset and list a few observations.

. use https://www.stata-press.com/data/r18/iran

. describe

Contains data from https://www.stata-press.com/data/r18/iran.dta
Observations: 344

Variables: 2 29 Jan 2022 02:37

Variable Storage Display Value
name type format label Variable label

before byte %8.0g vlab Public opinion before IC
after byte %8.0g vlab Public opinion after IC

Sorted by:

. list in 1/5

before after

1. Agree Agree
2. Agree Disagree
3. Agree Unsure
4. Disagree Agree
5. Disagree Disagree

Each observation corresponds to one of the 344 individuals. The data are in wide form so that
each observation has a before and an after measurement. We now perform the test without options.

http://stata.com


4 symmetry — Symmetry and marginal homogeneity tests

. symmetry before after

Public
opinion Public opinion after IC
before IC Agree Disagree Unsure Total

Agree 47 56 38 141
Disagree 28 61 31 120

Unsure 26 47 10 83

Total 101 164 79 344

chi2 df Prob>chi2

Symmetry (asymptotic) 14.87 3 0.0019
Marginal homogeneity (Stuart--Maxwell) 14.78 2 0.0006

The test first tabulates the data in a K×K table and then performs Bowker’s (1948) test for table
symmetry and the Stuart–Maxwell (Stuart 1955; Maxwell 1970) test for marginal homogeneity.

Both the symmetry test and the marginal homogeneity test are highly significant, thus indicating
a shift in public opinion.

An exact test of symmetry is provided for use on sparse tables. This test is computationally
intensive, so it should not be used on large tables. Because we are working on a fast computer, we
will run the symmetry test again and this time include the exact option. We will suppress the output
of the contingency table by specifying notable and include the contrib option so that we may
further examine the cells responsible for the significant result.

. symmetry before after, contrib exact mh notable

Contribution
to symmetry

Cells chi-squared

n1_2 & n2_1 9.3333
n1_3 & n3_1 2.2500
n2_3 & n3_2 3.2821

chi2 df Prob>chi2

Symmetry (asymptotic) 14.87 3 0.0019
Marginal homogeneity (Stuart--Maxwell) 14.78 2 0.0006
Marginal homogeneity (Bickenboller) 13.53 2 0.0012
Marginal homogeneity (no diagonals) 15.25 2 0.0005

Symmetry (exact significance probability) 0.0018

The largest contribution to the symmetry χ2 is due to cells n12 and n21. These correspond to
changes between the agree and disagree categories. Of the 344 individuals, 56 (16.3%) changed from
the agree to the disagree response, whereas only 28 (8.1%) changed in the opposite direction.

For these data, the results from the exact test are similar to those from the asymptotic test.
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Example 2

Breslow and Day (1980, 163) reprinted data from Mack et al. (1976) from a case–control study
of the effect of exogenous estrogen on the risk of endometrial cancer. The data consist of 59 elderly
women diagnosed with endometrial cancer and 59 disease-free control subjects living in the same
community as the cases. Cases and controls were matched on age, marital status, and time living
in the community. The data collected included information on the daily dose of conjugated estrogen
therapy. Breslow and Day analyzed these data by creating four levels of the dose variable. Here are
the data as entered into a Stata dataset:

. use https://www.stata-press.com/data/r18/bd163

. list, noobs divider

case control count

0 0 6
0 0.1-0.299 2
0 0.3-0.625 3
0 0.626+ 1

0.1-0.299 0 9

0.1-0.299 0.1-0.299 4
0.1-0.299 0.3-0.625 2
0.1-0.299 0.626+ 1
0.3-0.625 0 9
0.3-0.625 0.1-0.299 2

0.3-0.625 0.3-0.625 3
0.3-0.625 0.626+ 1

0.626+ 0 12
0.626+ 0.1-0.299 1
0.626+ 0.3-0.625 2

0.626+ 0.626+ 1

This dataset is in a different format from that of the previous example. Instead of each observation
representing one matched pair, each observation represents possibly multiple pairs indicated by the
count variable. For instance, the first observation corresponds to six matched pairs where neither
the case nor the control was on estrogen, the second observation corresponds to two matched pairs
where the case was not on estrogen and the control was on 0.1 to 0.299 mg/day, etc.

To use symmetry to analyze this dataset, we must specify fweight to indicate that in our data
there are observations corresponding to more than one matched pair.
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. symmetry case control [fweight=count]

Dosage
level for Dosage level for control
case 0 0.1-0.299 0.3-0.625 0.626+ Total

0 6 2 3 1 12
0.1-0.299 9 4 2 1 16
0.3-0.625 9 2 3 1 15

0.626+ 12 1 2 1 16

Total 36 9 10 4 59

chi2 df Prob>chi2

Symmetry (asymptotic) 17.10 6 0.0089
Marginal homogeneity (Stuart--Maxwell) 16.96 3 0.0007

Both the test of symmetry and the test of marginal homogeneity are highly significant, thus leading
us to reject the null hypothesis that there is no effect of exposure to estrogen on the risk of endometrial
cancer.

Breslow and Day perform a test for trend assuming that the estrogen exposure levels were equally
spaced by recoding the exposure levels as 1, 2, 3, and 4.

We can easily reproduce their results by recoding our data in this way and by specifying the
trend option. Two new numeric variables were created, ca and co, corresponding to the variables
case and control, respectively. Below, we list some of the data and our results from symmetry:

. encode case, gen(ca)

. encode control, gen(co)

. label values ca

. label values co

. list in 1/4

case control count ca co

1. 0 0 6 1 1
2. 0 0.1-0.299 2 1 2
3. 0 0.3-0.625 3 1 3
4. 0 0.626+ 1 1 4

. symmetry ca co [fw=count], notable trend cc

chi2 df Prob>chi2

Symmetry (asymptotic) 17.10 6 0.0089
Marginal homogeneity (Stuart--Maxwell) 16.96 3 0.0007

Linear trend in the (log) RR 14.43 1 0.0001

We requested the continuity correction by specifying cc. Doing so is appropriate because our coded
exposure levels are equally spaced.

The test for trend was highly significant, indicating an increased risk of endometrial cancer with
increased dosage of conjugated estrogen.

You must be cautious: the way in which you code the exposure variable affects the linear trend
statistic. If instead of coding the levels as 1, 2, 3, and 4, we had instead used 0, 0.2, 0.46, and 0.7
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(roughly the midpoint in the range of each level), we would have obtained a χ2 statistic of 11.19 for
these data.

Stored results
symmetry stores the following in r():

Scalars
r(N pair) number of matched pairs
r(chi2) asymptotic symmetry χ2

r(df) asymptotic symmetry degrees of freedom
r(p) asymptotic symmetry p-value
r(chi2 sm) MH (Stuart–Maxwell) χ2

r(df sm) MH (Stuart–Maxwell) degrees of freedom
r(p sm) MH (Stuart–Maxwell) p-value
r(chi2 b) MH (Bickenböller) χ2

r(df b) MH (Bickenböller) degrees of freedom
r(p b) MH (Bickenböller) p-value
r(chi2 nd) MH (no diagonals) χ2

r(df nd) MH (no diagonals) degrees of freedom
r(p nd) MH (no diagonals) p-value
r(chi2 t) χ2 for linear trend
r(p trend) p-value for linear trend
r(p exact) exact symmetry p-value

Methods and formulas
Methods and formulas are presented under the following headings:

Asymptotic tests
Exact symmetry test

Asymptotic tests

Consider a square table with K exposure categories, that is, K rows and K columns. Let nij be
the count corresponding to row i and column j of the table, Nij = nij +nji, for i, j = 1, 2, . . . ,K,
and ni., and let n.j be the marginal totals for row i and column j, respectively. Asymptotic tests for
symmetry and marginal homogeneity for this K ×K table are calculated as follows:

The null hypothesis of complete symmetry pij = pji, i 6= j, is tested by calculating the test
statistic (Bowker 1948)

Tcs =
∑
i<j

(nij − nji)2

nij + nji

which is asymptotically distributed as χ2 with K(K − 1)/2 − R degrees of freedom, where R is
the number of off-diagonal cells with Nij = 0 as discussed in Hoenig, Morgan, and Brown (1995).
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The null hypothesis of marginal homogeneity, pi. = p.i, is tested by calculating the Stuart–Maxwell
test statistic (Stuart 1955; Maxwell 1970),

Tsm = d′V−1d

where d is a column vector with elements equal to the differences di = ni.−n.i for i = 1, 2, . . . ,K,
and V is the variance–covariance matrix with elements

vii = ni. + n.i − 2nii

vij = −(nij + nji), i 6= j

Tsm is asymptotically χ2 with K − 1 degrees of freedom.

This test statistic properly accounts for the dependence between the table’s rows and columns.
When the matrix V is not of full rank, a generalized inverse V∗ is substituted for V−1.

The Bickeböller and Clerget-Darpoux (1995) marginal homogeneity test statistic is calculated by

Tmh =
∑
i

(ni. − n.i)2

ni. + n.i

This statistic is asymptotically distributed, under the assumption of marginal independence, as χ2

with K − 1 degrees of freedom.

The marginal homogeneity (no diagonals) test statistic T 0
mh is calculated in the same way as Tmh,

except that the diagonal elements do not enter into the calculation of the marginal totals. Unlike the
previous test statistic, T 0

mh reduces to a McNemar test statistic for 2 × 2 tables. The test statistic
{(K − 1)/2}T 0

mh is asymptotically distributed as χ2 with K− 1 degrees of freedom (Cleves, Olson,
and Jacobs 1997; Spieldman and Ewens 1996).

Breslow and Day’s test statistic for linear trend in the (log) of RR is{∑
i<j(nij − nji)(Xj −Xi)− cc

}2

∑
i<j(nij + nji)(Xj −Xi)2

where the Xj are the doses associated with the various levels of exposure and cc is the continuity
correction; it is asymptotically distributed as χ2 with 1 degree of freedom.

The continuity correction option is applicable only when the levels of the exposure variable are
equally spaced.

Exact symmetry test

The exact test is based on a permutation algorithm applied to the null distribution. The distribution
of the off-diagonal elements nij , i 6= j, conditional on the sum of the complementary off-diagonal
cells, Nij = nij + nji, can be written as the product of K(K − 1)/2 binomial random variables,

P (n) =
∏
i<j

(
Nij
nij

)
πij

nij (1− πij)nij

where n is a vector with elements nij and πij = E(nij/Nij |Nij). Under the null hypothesis of
complete symmetry, πij = πji = 1/2, and thus the permutation distribution is given by
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P0(n) =
∏
i<j

(
Nij
nij

)(
1
2

)Nij

The exact significance test is performed by evaluating

Pcs =
∑
n∈p

P0(n)

where p = {n : P0(n) < P0(n
∗)} and n∗ is the observed contingency table data vector. The

algorithm evaluates pcs exactly. For information about permutation tests, see Good (2005, 2006).
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