sunflower - Density-distribution sunflower plots

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Acknowledgments	References

Description

sunflower draws density-distribution sunflower plots (Plummer and Dupont 2003). Dark sunflowers, light sunflowers, and marker symbols represent high-, medium-, and low-density regions of the data, respectively. These plots are useful for displaying bivariate data whose density is too great for conventional scatterplots to be effective.

Quick start

Density-distribution sunflower plot showing the relationship between x and y sunflower y x

Set the center of the reference bin to $x=5$ and $y=8$
sunflower y x, xcenter(5) ycenter (8)
Same as above, but specify the width of the hexagonal bins to be 1.5
sunflower y x , xcenter(5) ycenter(8) binwidth(1.5)
Same as above, but set the minimum number of observations needed for a bin to be represented by a light sunflower to 4

```
sunflower y x, xcenter(5) ycenter(8) binwidth(1.5) light(4)
```

Use the s1color scheme

```
sunflower y x, scheme(s1color)
```

Specify that only the petals are shown and the hexegons are omitted

```
sunflower y x, flowersonly
```

Suppress display of the table

```
sunflower y x, notable
```


Menu

Graphics $>$ Smoothing and densities $>$ Density-distribution sunflower plot

Syntax

sunflower yvar xvar [if] [in] [weight] [, options]

options
 Description

Main
nograph
notable
marker_options
Bins/Petals
binwidth(\#)
binar(\#)
bin_options
light(\#)
dark(\#)
xcenter (\#)
ycenter(\#)
petalweight(\#)
petallength(\#)
petal_options
flowersonly
nosinglepetal
Add plots
addplot (plot) add other plots to generated graph
Y axis, X axis, Titles, Legend, Overall, By
twoway_options any options documented in [G-3] twoway_options
bin_options

Description

[$1 \mid$ d $]$ bstyle (areastyle)
[1] \mid] bcolor (colorstyle)
[1] $]$ bfcolor (colorstyle)
[l|d]blstyle(linestyle)
[l|d] blcolor(colorstyle)
$\underline{[\underline{l} \mid \underline{d}]}$ blwidth(linewidthstyle)
overall look of hexagonal bins
outline and fill color
fill color
overall look of outline
outline color
thickness of outline
petal_options

Description

[l|d flstyle(linestyle)
overall style of sunflower petals
[l|d $]$ flcolor (colorstyle) color of sunflower petals
$[\underline{l} \mid \underline{d}] \underline{f l w i d t h}$ (linewidthstyle) thickness of sunflower petals

All options are rightmost; see [G-4] Concept: repeated options.
fweights are allowed; see [U] 11.1.6 weight.

Options

Main
nograph prevents the graph from being generated.
notable prevents the summary table from being displayed. This option is implied when the by () option is specified.
marker_options affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see [G-3] marker_options.

Bins/Petals
binwidth(\#) specifies the horizontal width of the hexagonal bins in the same units as xvar. By default,

$$
\text { binwidth }=\max (\mathrm{rbw}, \mathrm{nbw})
$$

where

$$
\begin{gathered}
\text { rbw }=\text { range of } x v a r / 40 \\
\text { nbw }=\text { range of } x \operatorname{var} / \max (1, \mathrm{nb})
\end{gathered}
$$

and

$$
\mathrm{nb}=\operatorname{int}(\min (\operatorname{sqrt}(n), 10 * \log 10(n)))
$$

where

$$
n=\text { the number of observations in the dataset }
$$

binar(\#) specifies the aspect ratio for the hexagonal bins. The height of the bins is given by

$$
\text { binheight }=\text { binwidth } \times \# \times 2 / \sqrt{3}
$$

where binheight and binwidth are specified in the units of yvar and xvar, respectively. The default is binar (r), where r results in the rendering of regular hexagons.
bin_options affect how the hexagonal bins are rendered.
lbstyle(areastyle) and dbstyle(areastyle) specify the look of the light and dark hexagonal bins, respectively. The options listed below allow you to change each attribute, but lbstyle() and dbstyle() provide the starting points. See [G-4] areastyle for a list of available area styles.
lbcolor (colorstyle) and dbcolor (colorstyle) specify one color to be used both to outline the shape and to fill the interior of the light and dark hexagonal bins, respectively. See [G-4] colorstyle for a list of color choices.
lbfcolor (colorstyle) and dbfcolor (colorstyle) specify the color to be used to fill the interior of the light and dark hexagonal bins, respectively. See [G-4] colorstyle for a list of color choices.
lblstyle(linestyle) and dblstyle (linestyle) specify the overall style of the line used to outline the area, which includes its pattern (solid, dashed, etc.), thickness, and color. The other options listed below allow you to change the line's attributes, but lblstyle() and dblstyle() are the starting points. See [G-4] linestyle for a list of choices.
lblcolor (colorstyle) and dblcolor(colorstyle) specify the color to be used to outline the light and dark hexagonal bins, respectively. See [G-4] colorstyle for a list of color choices.
lblwidth(linewidthstyle) and dblwidth(linewidthstyle) specify the thickness of the line to be used to outline the light and dark hexagonal bins, respectively. See [G-4] linewidthstyle for a list of choices.
light(\#) specifies the minimum number of observations needed for a bin to be represented by a light sunflower. The default is light (3).
dark(\#) specifies the minimum number of observations needed for a bin to be represented by a dark sunflower. The default is dark (13).
xcenter(\#) and ycenter(\#) specify the center of the reference bin. The default values are the median values of xvar and yvar, respectively. The centers of the other bins are implicitly defined by the location of the reference bin together with the common bin width and height.
petalweight(\#) specifies the number of observations represented by each petal of a dark sunflower. The default value is chosen so that the maximum number of petals on a dark sunflower is 14 .
petallength(\#) specifies the length of petals in the sunflowers. The value specified is interpreted as a percentage of half the bin width. The default is 100%.
petal_options affect how the sunflower petals are rendered.
lflstyle(linestyle) and dflstyle(linestyle) specify the overall style of the light and dark sunflower petals, respectively.
lflcolor (colorstyle) and dflcolor (colorstyle) specify the color of the light and dark sunflower petals, respectively.
lflwidth(linewidthstyle) and dflwidth(linewidthstyle) specify the width of the light and dark sunflower petals, respectively.
flowersonly suppresses rendering of the bins. This option is equivalent to specifying lbcolor (none) and dbcolor (none).
nosinglepetal suppresses flowers from being drawn in light bins that contain only 1 observation and dark bins that contain as many observations as the petal weight (see the petalweight() option).

Add plots
addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

[^0]
Remarks and examples

stata.com
A sunflower is several line segments of equal length, called petals, that radiate from a central point. There are two varieties of sunflowers: light and dark. Each petal of a light sunflower represents 1 observation. Each petal of a dark sunflower represents several observations. Dark and light sunflowers represent high- and medium-density regions of the data, and marker symbols represent individual observations in low-density regions.
sunflower divides the plane defined by the variables yvar and xvar into contiguous hexagonal bins. The number of observations contained within a bin determines how the bin will be represented.

- When there are fewer than light (\#) observations in a bin, each point is plotted using the usual marker symbols in a scatterplot.
- Bins with at least light (\#) but fewer than dark(\#) observations are represented by a light sunflower. Each petal of a light sunflower represents one observation in the bin.
- Bins with at least dark(\#) observations are represented by a dark sunflower. Each petal of a dark sunflower represents multiple observations.
See Dupont (2009, 87-92) for a discussion of sunflower plots and how to create them using Stata.

Example 1

Using the auto dataset, we want to examine the relationship between weight and mpg. To do that, we type

The two darkly shaded sunflowers immediately catch our eyes, indicating a group of 10 cars that are heavy (nearly 4,000 pounds) and fuel inefficient and a group 16 of cars that get about 20 miles per gallon and weight in the neighborhood of 3,000 pounds. The lighter sunflowers each indicate groups of three to seven cars that share similar weight and fuel economy characteristics. To obtain the number of cars in each group, we count the number of petals in each flower and consult the graph legend to see how many observations each petal represents.

Acknowledgments

We thank William D. Dupont and W. Dale Plummer Jr., both of the Department of Biostatistics at Vanderbilt University, who are the authors of the original sunflower command, for their assistance in producing this version.

References

Cleveland, W. S., and R. McGill. 1984. The many faces of a scatterplot. Journal of the American Statistical Association 79: 807-822. https://doi.org/10.2307/2288711.

Dupont, W. D. 2009. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of Complex Data. 2nd ed. Cambridge: Cambridge University Press.
Dupont, W. D., and W. D. Plummer, Jr. 2005. Using density-distribution sunflower plots to explore bivariate relationships in dense data. Stata Journal 5: 371-384.

Huang, C., J. A. McDonald, and W. Stuetzle. 1997. Variable resolution bivariate plots. Journal of Computational and Graphical Statistics 6: 383-396. https://doi.org/10.1080/10618600.1997.10474749.
Levy, D. E. 1999. 50 Years of Discovery: Medical Milestones from the National Heart, Lung, and Blood Institute's Framingham Heart Study. Hoboken, NJ: Center for Bio-Medical Communication.

Plummer, W. D., Jr., and W. D. Dupont. 2003. Density distribution sunflower plots. Journal of Statistical Software 8: 1-11. https://doi.org/10.18637/jss.v008.i03.
Steichen, T. J., and N. J. Cox. 1999. flower: Stata module to draw sunflower plots. Boston College Department of Economics, Statistical Software Components S393001. https://ideas.repec.org/c/boc/bocode/s393001.html.
Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

[^0]: Y axis, X axis, Titles, Legend, Overall, By
 twoway_options are any of the options documented in [G-3] twoway_options. These include options for titling the graph (see [G-3] title_options), options for saving the graph to disk (see [G-3] saving_option), and the by () option (see [G-3] by_option).

