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Description

permute performs permutation tests using Monte Carlo permutations or by enumeration of all
possible distinct permutations. A single variable is chosen to be permuted, and the permutation
distribution is estimated (or in the case of enumeration, fully determined) for specified statistics
returned by a Stata command or a user-written program.

Quick start
Estimate p-values for a permutation test of the coefficient of x in a linear regression, permuting values

of the outcome y

permute y _b[x]: regress y x

Test for r(mystat) returned by program myprog, permuting values of y
permute y r(mystat): myprog

Same as above, but increase the number of permutations from the default of 100 to 10,000
permute y r(mystat), reps(10000): myprog

Same as above, but display a dot for every 100 permutations instead of every permutation
permute y r(mystat), reps(10000) dots(100): myprog

Same as above, but set the random-number seed for reproducibility, and save the permuted statistics
in myfile.dta

permute y r(mystat), reps(10000) dots(100) rseed(1) saving(myfile): ///
myprog

Test for r(mystat1) and r(mystat2), naming the statistics stat1 and stat2, respectively
permute y stat1=r(mystat1) stat2=r(mystat2), reps(10000) rseed(1): ///

myprog

Perform permutations within strata defined by svar

permute y stat=r(mystat), reps(10000) rseed(1) strata(svar): myprog

Enumerate the full permutation distribution and display a dot for every 1,000 permutations
permute y stat=r(mystat), enumerate dots(1000): myprog

Menu
Statistics > Resampling > Permutation tests
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Syntax

Perform permutation test

permute permvar exp list
[
, options

]
: command

Report saved results

permute
[

varlist
] [

using filename
] [

, display options
]

options Description

Main

reps(#) perform # Monte Carlo permutations; default is reps(100)

enumerate compute all possible distinct permutations

Options

rseed(#) set random-number seed to #
strata(varlist) permute within strata
saving( filename, . . .) save results to filename with options for saving in double precision

and saving results to filename every # permutations

Reporting

standardize standardize test statistic using permutation distribution
mean and variance

level(#) set confidence level; default is level(95)

title(text) use text as title for permutation results
dots(#) display dots every # permutations
nodots suppress permutation dots
nowarning do not warn when e(sample) is not set
noisily display any output from command
trace trace command
verbose display full table legend
noheader suppress table header
nolegend suppress table legend

Advanced

nodrop do not drop observations
reject(exp) specify criterion for invalid results
eps(#) numerical tolerance; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.
weights are allowed in command.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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display options Description

standardize standardize test statistic using permutation distribution
mean and variance

level(#) set confidence level; default is level(95)

title(text) use text as title for results
verbose display full table legend
noheader suppress table header
nolegend suppress table legend
eps(#) numerical tolerance; seldom used

exp list contains (name: elist)
elist
eexp

elist contains newvar = (exp)
(exp)

eexp is specname
[eqno]specname

specname is b

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.

Options

� � �
Main �

reps(#) specifies the number of Monte Carlo permutations to perform. The default is reps(100).

The default of 100 permutations is chosen for convenience. In real-world applications, you will
most likely need to use more permutations. permute reports the Monte Carlo error, which you
can use to evaluate whether the specified number of permutations provides sufficient precision for
the reported p-value estimates.

enumerate specifies that all possible distinct permutations be computed. This gives the full permutation
distribution and p-values with no error. reps() and rseed() cannot be specified with enumerate.

The number of all possible distinct permutations is typically extremely large. Only for some small
problems will it be practical to fully enumerate the permutation distribution. If all the values
of permvar are unique, the number of possible permutations is N !, where N is the number of
observations. When permvar has a lot of repeated values (when, for example, it is a 0/1 variable),
the number of possible distinct permutations can be considerably less than N ! and may make
enumeration feasible.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
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Before beginning the enumeration, permute will calculate and display the number of distinct
permutations, allowing you to press Break when you see that the number of permutations is so
large as to make computation time impossibly long.

� � �
Options �

rseed(#) sets the random-number seed. Specifying this option is equivalent to typing the following
command prior to calling permute:

. set seed #

strata(varlist) specifies that the permutations be performed within each stratum defined by the
values of varlist.

saving( filename
[
, double every(#) replace

]
) creates a Stata data file (.dta file) consisting

of variables for each statistic in exp list containing the results for each permutation.

double specifies that the results for each permutation be saved as doubles, meaning 8-byte reals.
By default, they are saved as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th permutation. every() should be
specified only in conjunction with saving() when command takes a long time for each
permutation. This will allow recovery of partial results should some other software crash your
computer. See [P] postfile.

replace specifies that filename be overwritten if it exists.

� � �
Reporting �

standardize specifies that the observed value of each test statistic be standardized. That is, the
observed test statistic Tobs is standardized by calculating [Tobs − mean(T )]/

√
Var(T ), where

mean(T ) and Var(T ) are the mean and variance of the permutation distribution of T . Standardized
test statistics are useful for seeing roughly how extreme (and in what direction) the observed test
statistic is.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

title(text) specifies a title to be displayed above the table of permutation results.

dots(#) and nodots specify whether to display permutation dots. By default, one dot character is
displayed for each successful permutation. An “x” is displayed if command returns an error or if
any value in exp list is missing. You can also control whether dots are displayed using set dots;
see [R] set.

dots(#) displays dots every # permutations. dots(0) is a synonym for nodots.

nodots suppresses display of the permutation dots.

nowarning suppresses the printing of a warning message when command does not set e(sample).

noisily requests that any output from command be displayed. This option implies the nodots
option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

verbose requests that the full table legend be displayed when multiple coefficients or standard errors
are specified using the b or se notation.

noheader suppresses display of the table header. This option implies the nolegend option.

https://www.stata.com/manuals/u9.pdf#u9TheBreakkey
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/ppostfile.pdf#ppostfile
https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/rset.pdf#rset
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nolegend suppresses display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

� � �
Advanced �

nodrop prevents permute from dropping observations outside the if and in qualifiers. nodrop
will also cause permute to ignore the contents of e(sample) if it exists as a result of running
command. By default, permute temporarily drops out-of-sample observations.

reject(exp) specifies an expression that indicates when results should be rejected. When exp is
true, the resulting values are reset to missing values.

eps(#) specifies the numerical tolerance for testing T ≤ Tobs and T ≥ Tobs, where T is the test
statistic and Tobs is its observed value. These are considered true if, respectively, T ≤ Tobs + #
or T ≥ Tobs − #. The default is eps(1e-7). You will not have to specify eps() under normal
circumstances.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Monte Carlo permutation tests
Two-sided p-values from permutation tests
One-sided permutation test
Enumeration
Efficiency considerations for Monte Carlo permutations
Efficiency considerations for enumeration

Introduction

Permutation tests are based on the idea of scrambling—that is, permuting—the order of a variable
in all possible ways, calculating the value of a test statistic for each permutation, and taking this set
of values of the statistic as its distribution.

For instance, consider the correlation of two variables, corr(x,y), where x = (x1, . . . , xn) and
y = (y1, . . . , yn). We hold the order of x fixed and permute the order of y in all possible ways. For
each permutation y∗, we calculate T ∗ = corr(x,y∗). The set of T ∗ gives the permutation distribution
for the correlation. This permutation distribution is the distribution of the correlation under the null
hypothesis that the ordering of the elements of y are independent of the ordering of the elements of
x, conditional on the observed values of x and y.

Aside: Actually, the null hypothesis does not require independence. A weaker assumption of
exchangeability is sufficient. If x and y are observed values of the random variates X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yn), then the joint distribution f(X,Y) is called exchangeable when it is invariant
to the orderings of X1, . . . , Xn and Y1, . . . , Yn.

The p-value for the permutation test is the proportion of permutations that produce a test statistic
T ∗ as extreme or more extreme than the test statistic Tobs computed using the observed data.

permute estimates p-values for permutation tests using Monte Carlo permutations or by enumerating
all possible permutations when the enumerate option is specified. To do Monte Carlo permutations,
you type

. permute permvar exp list, reps(#): command

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
http://stata.com


6 permute — Permutation tests

The values in the variable permvar are randomly permuted # times, each time executing command
and collecting the associated values from the expressions in exp list.

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with permute, as long as they follow standard Stata syntax; see [U] 11 Language
syntax. exp list specifies the statistics to be collected from the execution of command. Despite the
fact that permute works with most Stata commands, that does not mean the resulting permutation
test is a sensible test. See, for example, Good (2006).

To enumerate all possible distinct permutations, you type

. permute permvar exp list, enumerate: command

permute may be used for replaying results, but this feature is appropriate only when a dataset
generated by permute is currently in memory or is identified by the using specification.

Monte Carlo permutation tests

We first demonstrate how to apply the permute prefix by testing for a difference in the distribution
of a variable across two groups. Here we perform the test using Monte Carlo permutations. In
example 3, we do the same test using complete enumeration.

Example 1: Wilcoxon rank-sum test

Let’s consider calculating the p-value for the Wilcoxon rank-sum test performed by ranksum.
Suppose that we collected data from some experiment: y is some measure we took on 17 individuals,
and group identifies the group to which an individual belongs.

. use https://www.stata-press.com/data/r18/permute2

. list, sepby(group)

group y

1. 1 6
2. 1 11
3. 1 20
4. 1 2
5. 1 9
6. 1 5

7. 0 2
8. 0 1
9. 0 6

10. 0 0
11. 0 2
12. 0 3
13. 0 3
14. 0 12
15. 0 4
16. 0 1
17. 0 5

https://www.stata.com/manuals/u11.pdf#u11Languagesyntax
https://www.stata.com/manuals/u11.pdf#u11Languagesyntax
https://www.stata.com/manuals/rranksum.pdf#rranksum
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We analyze the data using ranksum:

. ranksum y, by(group)

Two-sample Wilcoxon rank-sum (Mann--Whitney) test

group Obs Rank sum Expected

0 11 79 99
1 6 74 54

Combined 17 153 153

Unadjusted variance 99.00
Adjustment for ties -0.97

Adjusted variance 98.03

H0: y(group==0) = y(group==1)
z = -2.020

Prob > |z| = 0.0434
Exact prob = 0.0436

The test gives an approximate p-value of 0.0434 and an exact p-value of 0.0436.

Let’s try to reproduce these results using permute. The test statistic T for the Wilcoxon rank-sum
test is the sum of the ranks for the first group, which is 79, and is stored as r(sum obs). We specify
reps(10000) to do 10,000 Monte Carlo permutations and dots(100) to display a dot every 100th
permutation. We set the random-number seed so that we can duplicate our results.

. set seed 1234

. permute group r(sum_obs), reps(10000) dots(100): ranksum y, by(group)
(running ranksum on estimation sample)

warning: ranksum does not set e(sample), so no observations will be excluded
from the permutations because of missing values or other reasons. To
exclude observations, press Break, save the data, drop any
observations that are to be excluded, and rerun permute.

Permutations (10,000): .........1,000.........2,000.........3,000.........4,000
> .........5,000.........6,000.........7,000.........8,000.........9,000.......
> ..10,000 done

Monte Carlo permutation results Number of observations = 17
Permutation variable: group Number of permutations = 10,000

Command: ranksum y, by(group)
_pm_1: r(sum_obs)

Monte Carlo error

T T(obs) Test c n p SE(p) [95% CI(p)]

_pm_1 79 lower 223 10000 .0223 .0015 .0195 .0254
upper 9817 10000 .9817 .0013 .9789 .9842

two-sided .0446 .0021 .0406 .0486

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper); SE and CI approximate.

The lengthy message about e(sample) is worth noting. If there were missing values in the data,
we might want to drop those observations before running permute. To suppress the message in future
runs, use the nowarning option.

The two-sided p-value obtained by this Monte Carlo procedure is 0.0446, which is close to the exact
p-value of 0.0436 computed by ranksum. See the next section for a description of how two-sided
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p-values are calculated when performing permutation tests. See example 2 for a test that requires a
one-sided p-value.

Note that we typed

. permute group . . .

rather than

. permute y . . .

We permuted the 0/1 variable group, which defines the groups, rather than the outcome variable y.
For a statistic dependent on only two variables, it obviously does not matter which one we permute in
terms of the theory of the test, but it does matter in terms of the efficiency of how permute does the
computation. permute uses a different random shuffling algorithm for 0/1 (or dichotomous) variables
than it does with other variables. See Efficiency considerations for Monte Carlo permutations below
for details.

permute reports standard errors and confidence intervals for p-values because, as with any other
Monte Carlo procedure, they are approximations to the true exact p-values. These statistics are useful to
assess the precision of the computed p-values. If you need more precision, specify more permutations
in the reps() option. See Methods and formulas for a description of how the standard errors and
confidence intervals are calculated.

The confidence interval for the Monte Carlo two-sided p-value in this example is [0.0406, 0.0486].
If we want to increase the precision of the p-value, we could run permute again with more random
permutations to narrow the confidence interval. The total number of possible distinct permutations of
group, however, is not extremely large, and we can perform the permutation test using enumeration.
See example 3, where we do just that.

Two-sided p-values from permutation tests

In the above example, we used the two-sided p-value for our hypothesis testing. For permutation
distributions, two-sided p-values require some explanation about how they are calculated.

permute calculates the two-sided p-value as p = 2 min(plower, pupper), where plower is
the lower one-sided p-value and pupper the upper one-sided p-value. (More precisely, p =
min[1, 2 min(plower, pupper)] is used because obviously p-values must be bounded by 1.)

In general, the p-value is defined as the probability under the null hypothesis of obtaining a value
of the test statistic T equal to or more extreme than the value Tobs that was actually observed. For
one-sided p-values, what is “more extreme” is clear. For lower one-sided p-values, it is the probability
that T ≤ Tobs, and for upper one-sided p-values, it is the probability that T ≥ Tobs. When T has a
symmetric distribution, the two-sided p-value is typically defined as the probability that |T | ≥ |Tobs|.
Permutation distributions, however, are not in general symmetric.

Under a permutation-based null hypothesis, the domain of T consists of all the possible permutations
of the underlying data used to calculate T . The domain is discrete and finite, and hence the permutation
distribution of T is discrete and finite. These finite distributions are symmetric only in certain cases.
For instance, with our example of the Wilcoxon rank-sum test, if the data consist of untied ranks,
the distribution is symmetric. When there are ties in the ranks, however, the distribution is in most
cases not symmetric.

When distributions are asymmetric, what values of T are “more extreme” than Tobs? Suppose
Tobs is below the mean of the distribution. Clearly, the lower-tail values T ≤ Tobs are more extreme.
But what values of T from the upper tail are more extreme?

https://www.stata.com/manuals/rranksum.pdf#rranksum
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For asymmetric distributions, the rationale for using p = 2 min(plower, pupper) for two-sided tests
is the following: It takes the smallest one-sided p-value and doubles it. Comparing this two-sided
p-value against a significance level of, say, 0.05 is equivalent to comparing the smallest one-sided
p-value against a level of 0.025. It essentially turns the two-sided test into a one-sided test with the
significance level cut in half. So this definition conveniently sidesteps the need to define what values
of T from the opposite tail from Tobs are more extreme! Also, it is appropriate for both symmetric
and asymmetric distributions.

One-sided permutation test

In some cases, we will want to perform a permutation test based on a one-sided p-value.

Example 2: Permutation tests with ANOVA

Consider some fictional data from an experimental randomized complete-block design in which
there are 5 subjects each receiving 10 different treatments. We want to test whether any of the
treatments have an effect different from the effects of the other treatments.

Let’s load the data and list the data for the first two subjects:

. use https://www.stata-press.com/data/r18/permute1, clear

. sort subject treatment

. list subject treatment y in 1/20, abbrev(10)

subject treatment y

1. 1 1 4.407557
2. 1 2 4.280349
3. 1 3 4.418574
4. 1 4 4.075359
5. 1 5 3.899775

6. 1 6 5.533271
7. 1 7 5.142111
8. 1 8 5.791124
9. 1 9 4.504411

10. 1 10 4.896333

11. 2 1 5.693386
12. 2 2 4.508785
13. 2 3 5.10376
14. 2 4 5.753985
15. 2 5 5.092277

16. 2 6 4.496496
17. 2 7 6.339948
18. 2 8 4.820389
19. 2 9 5.686253
20. 2 10 6.951727
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These data may be analyzed using anova.

. anova y treatment subject

Number of obs = 50 R-squared = 0.3544
Root MSE = .914159 Adj R-squared = 0.1213

Source Partial SS df MS F Prob>F

Model 16.518219 13 1.2706322 1.52 0.1574

treatment 13.022671 9 1.4469634 1.73 0.1174
subject 3.4955481 4 .87388703 1.05 0.3973

Residual 30.08475 36 .83568751

Total 46.602969 49 .951081

anova gives a p-value of 0.1174 for the treatment effect. This p-value is calculated with the
assumption of normality for the distribution of the outcome conditional on the means of each
treatment and subject effect.

Suppose we do not want to assume normality. The treatments were assigned in a random order to
each of the subjects. A null hypothesis of no treatment effect means that the observed values of y and
their order were determined by factors other than the treatments. The treatments were essentially labels
that had nothing to do with the outcomes, and any other ordering of the labels would be a possible
occurrence. That is, we imagine running the experiment multiple times, each with a different ordering
of the treatments, but each time, we get the same observed values of y. This is the permutation-based
formulation of the null hypothesis.

What about the subjects? Each subject gets each of the 10 treatments, so clearly we must permute
the treatments within each subject independently of the permutations for the other subjects. We can
do this using the strata() option with permute.

If we type ereturn list after anova, we see that the F statistic for treatment is stored in
e(F 1). This is our test statistic for our permutation test.

We save the dataset containing all the permutations of the test statistic using the saving() option.
Specifying the test statistic as F treatment=e(F 1) labels the test statistic as F treatment in
the output and is also the name of the variable containing the test statistic in permanova.dta, the
dataset created by saving(). We set the seed for the random-number generator and also specify the
nodots option to suppress the dots in the output.
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. permute treatment F_treatment=e(F_1), reps(10000) strata(subject)
> saving(permanova) rseed(1234) nodots: anova y treatment subject

Monte Carlo permutation results Number of observations = 50
Permutation variable: treatment Number of strata = 5

Number of permutations = 10,000

Command: anova y treatment subject
F_treatment: e(F_1)

Monte Carlo error

T T(obs) Test c n p SE(p) [95% CI(p)]

F_treatment 1.731465 lower 8788 10000 .8788 .0033 .8722 .8851
upper 1212 10000 .1212 .0033 .1149 .1278

two-sided .2424 .0043 .2340 .2508

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper); SE and CI approximate.

Our test statistic is an F statistic, so we are interested in the number of permutations that have a
larger (more extreme) statistic than the 1.73 we obtained with our original data. Therefore, we want
the upper one-sided p-value, which is 0.1212. This value is close to the p-value given by anova of
0.1174 for the treatment effect.

For an additional example of a permutation test, with an application in epidemiology, see Hayes
and Moulton (2017, 237–241).

Enumeration

When the number of observations, N , in a dataset is small, it may be possible to enumerate
all possible permutations and obtain p-values without the error involved in computing Monte Carlo
p-values.

When permute does an enumeration, not only does N matter, but the number of distinct values
of the permutation variable matters as well. permute does the enumeration by computing only
permutations that give different arrangements of the permutation variable; that is, it does not compute
any duplicate permutations. So the number of distinct values (and their multiplicity) of the permutation
variable determines the number of permutations enumerated and so determines whether enumeration
is feasible. See Efficiency considerations for enumeration below for details.

Example 3: Wilcoxon rank-sum test using enumeration

Here we repeat example 1, but this time we do it by enumerating all possible permutations. We
load the data:

. use https://www.stata-press.com/data/r18/permute2
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The data consist of an outcome y grouped by the variable group. If we tabulate group

. tabulate group

Group Freq. Percent Cum.

0 11 64.71 64.71
1 6 35.29 100.00

Total 17 100.00

we see that group consists of 11 zeros and 6 ones. Hence, there are only
(
17
6

)
= 12,376 possible

distinct permutations of group.

In example 1, we used ranksum to compute the test statistic, but each time ranksum is called, it
computes the ranks of y. It is unnecessary to recompute the ranks for each permutation. It is better
to compute the ranks just once at the outset. We can do this using the rank() function of egen:

. egen r = rank(y)

The test statistic is the sum of the ranks for either one of the groups. The sum can be computed
efficiently using summarize with an if restriction and the meanonly option.

. permute group r(sum), enumerate nodrop nowarning dots(100): summarize r
> if group == 1, meanonly
(running summarize on estimation sample)
(enumerating all 12,376 possible permutations)

Permutations (12,376): .........1,000.........2,000.........3,000.........4,000
> .........5,000.........6,000.........7,000.........8,000.........9,000.......
> ..10,000.........11,000.........12,000.... done

Enumeration permutation results

Number of observations = 17
Number of permutations = 12,376

Permutation variable: group

Command: summarize r if group == 1, meanonly
_pm_1: r(sum)

T T(obs) Test c n p

_pm_1 74 lower 12142 12376 .9811
upper 270 12376 .0218

two-sided .0436

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper).

Note that it is necessary to specify the nodrop option. Otherwise, permute would drop all observations
not satisfying if group == 1 before doing the permutations, and that would not give us what we
want.

permute with the enumerate option gave a two-sided p-value of 0.0436, which is the same as
the exact p-value reported by ranksum, as it should be.

https://www.stata.com/manuals/degen.pdf#degen
https://www.stata.com/manuals/rsummarize.pdf#rsummarize
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With group as the variable being permuted, the number of distinct permutations is quite small.
If, however, we attempt to do the enumeration for all the distinct permutations of r:

. permute r r(sum), enumerate nodrop nowarning dots(100):
> summarize r if group == 1, meanonly
(running summarize on estimation sample)
(enumerating all 3.71e+12 possible permutations)

Permutations (3,705,077,376,000): ..........1,000..........2,000..........3,000
> ..........4,000......... Break
r(1);

Each permutation takes about 0.1 millisecond on our computer. Thus, the enumeration will take
0.1× 3.71× 1012/(365× 24× 60× 60× 1000) ≈ 12 years, so we pressed Break .

Efficiency considerations for Monte Carlo permutations

Suppose you want to perform a randomization two-sample t test, which is like the two-sample
t test that assumes normality, only the randomization test is based on permuting the variable that
defines the samples. It is the same as the Wilcoxon rank-sum test, except the observed values of the
outcome, rather than their ranks, are used for the test statistic.

So say we have a variable x with continuous outcomes for two groups defined by the variable
group, with values 0 or 1. The randomization two-sample t test could be done using Monte Carlo
permutations by typing

. permute x r(mu_1), reps(10000): ttest x, by(group)

Or by typing

. permute group r(mu_1), reps(10000): ttest x, by(group)

In the first case, x was permuted, and in the second, group. Both are valid ways to do Monte Carlo
permutations. permute is smart, however, and treats a 0/1 variable differently from how it treats a
variable with lots of distinct values.

Suppose there are fewer 1s than 0s in group. Rather than randomly permuting all the 0s and 1s,
permute randomly shuffles the 1s into the 0s. If there are only a few 1s relative to the number of
0s, this method is much faster than permuting all the values. Hence, if you are doing a permutation
test that involves two variables, pick the one with the fewest distinct values to be the permvar.

When the strata() option is specified, permute uses special code for the case in which the
permvar is dichotomous (with, say, values y0 and y1) and each stratum contains a single observation
equal to y1 and all other observations in the stratum equal to y0 (and y0 and y1 do not flip or change
in value across strata). If you are doing a stratified permutation test and you have such a variable
whose permutations will give the test you want, be sure to make it the permvar.

For all types of data, Monte Carlo permutations of the permvar are computed quickly. If the
command calculating the test statistic for each permutation is not fast, it is unlikely you will notice
the greater speed of permuting a dichotomous variable. If, however, you are using a fast command
such as regress, you likely will notice the greater speed.

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(1)
https://www.stata.com/manuals/u9.pdf#u9TheBreakkey
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Efficiency considerations for enumeration

Doing an enumeration of all possible distinct permutations using the enumerate option, however,
is a different story. Here the selection of the permvar is crucial and typically determines whether it
is feasible to do the enumeration.

Consider performing the randomization t test we described earlier using enumeration:

. permute group r(mu_1), enumerate: ttest x, by(group)

Suppose there are 20 observations, 10 with group = 0 and 10 with group = 1. Typing permute

group . . . will enumerate all
(
20
10

)
= 184,756 possible distinct permutations of group. (When we

say “distinct permutations”, we mean that duplicate permutations are not computed.)

If, however, we type

. permute x r(mu_1), enumerate: ttest x, by(group)

permute x . . . will attempt to enumerate all possible permutations of x. If all the values of x are
unique, there are 20! ≈ 2.4× 1018 possible permutations of x, which is much larger than 184,756.

Hence, a dichotomous variable or a variable with few distinct values should always be chosen as
the permvar rather than another variable with many distinct values whenever possible. (To be precise,
both the number of distinct values and their multiplicities determine the number of permutations. See
Methods and formulas .)

See example 3 for an example using enumeration.

Stored results
permute stores the following in r():

Scalars
r(N) number of observations for command
r(n reps) number of permutations performed
r(k exp) number of standard expressions
r(k eexp) number of b and se expressions
r(n strata) number of strata, if strata() specified
r(level) confidence level

Macros
r(cmd) permute
r(command) command following colon
r(permvar) permutation variable
r(enumerate) "enumerate", if enumerate specified
r(title) title in output
r(rngstate) random-number state used for Monte Carlo permutations
r(exp#) #th expression
r(strata) strata variable, if strata() specified
r(missing) "missing" when one or more expressions equal missing value

Matrices
r(b) observed statistics
r(b std) standardized observed statistics, if standardize specified
r(n) number of nonmissing results
r(c lower) counts for lower one-sided p-values
r(c upper) counts for upper one-sided p-values
r(p lower) lower one-sided p-values
r(p upper) upper one-sided p-values
r(p twosided) two-sided p-values
r(se p lower) Monte Carlo standard errors of lower one-sided p-values
r(se p upper) Monte Carlo standard errors of upper one-sided p-values
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r(se p twosided) Monte Carlo standard errors of two-sided p-values
r(ci p lower) Monte Carlo confidence intervals of lower one-sided p-values
r(ci p upper) Monte Carlo confidence intervals of upper one-sided p-values
r(ci p twosided) Monte Carlo confidence intervals of two-sided p-values

Methods and formulas
One-sided p-values are based on counts of the test statistic T calculated for each permutation

that are more extreme than the observed value Tobs. The lower one-sided p-value uses the count
c = #{T ≤ Tobs}, and the upper one-sided p-value uses c = #{T ≥ Tobs}.

The counts from Monte Carlo permutations are assumed to have a binomial distribution. Standard
errors and confidence intervals are computed using cii proportions n c, where n is the number
of permutations that yielded nonmissing results and c is the count. The confidence intervals are exact
binomial confidence intervals. See Methods and formulas in [R] ci.

permute calculates the two-sided p-value as p = min[1, 2 min(plower, pupper)], where plower is
the lower one-sided p-value and pupper the upper one-sided p-value. Because the definition of the
two-sided p-value does not yield a simple formula for the standard error or confidence interval for
Monte Carlo permutations, the following ad hoc procedure is used. If plower is the minimum one-sided
p-value, its count clower is doubled. If pupper is the minimum one-sided p-value, its count cupper
is doubled. More precisely, the value c2 = min[n, 2 min(clower, cupper)] is used, and its distribution
is assumed to be approximately binomial. Standard errors and confidence intervals are computed
using cii proportions n c2, wald. The confidence intervals produced are asymptotic binomial
confidence intervals.

When enumerate is specified, the p-values have no error.

Suppose there are N observations and the variable being permuted contains K distinct values,
each with multiplicity nk, k = 1, . . . ,K. The total number of distinct permutations is

N !

n1!n2! · · · nK !

This is the number of permutations computed when enumerate is specified.

When standardize is specified, instead of displaying the observed test statistic Tobs, the
standardized statistic

Tobs −mean(T )√
Var(T )

is displayed where mean(T ) and Var(T ) are the mean and variance of the permutation distribution
of T :

mean(T ) =
1

n

n∑
i=1

Ti

Var(T ) =
1

n

n∑
i=1

{Ti −mean(T )}2

n is the number of permutations, and Ti is the test statistic calculated for the ith permutation.

https://www.stata.com/manuals/rci.pdf#rciMethodsandformulas
https://www.stata.com/manuals/rci.pdf#rci


16 permute — Permutation tests

References
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Hayes, R. J., and L. H. Moulton. 2017. Cluster Randomised Trials. 2nd ed. Boca Raton, FL: CRC Press.

Kaiser, J. 2007. An exact and a Monte Carlo proposal to the Fisher–Pitman permutation tests for paired replicates
and for independent samples. Stata Journal 7: 402–412.

Kaiser, J., and M. G. Lacy. 2009. A general-purpose method for two-group randomization tests. Stata Journal 9:
70–85.

Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] simulate — Monte Carlo simulations

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

http://www.stata-journal.com/article.html?article=st0214
http://www.stata-journal.com/article.html?article=st0526
http://www.stata-journal.com/article.html?article=st0526
http://www.stata.com/bookstore/crt.html
http://www.stata-journal.com/article.html?article=st0134
http://www.stata-journal.com/article.html?article=st0134
http://www.stata-journal.com/article.html?article=st0158
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/rsimulate.pdf#rsimulate
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

