Title stata.com

nbreg postestimation — Postestimation tools for nbreg and gnbreg

Postestimation commands predict margins
Remarks and examples Methods and formulas Reference
Also see

Postestimation commands

The following postestimation commands are available after nbreg and gnbreg:

Command	Description					
contrast	contrasts and ANOVA-style joint tests of estimates					
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian information criteria (AIC, CAIC, AICc, and BIC)					
estat summarize	summary statistics for the estimation sample					
estat vce	variance-covariance matrix of the estimators (VCE)					
estat (svy)	postestimation statistics for survey data					
estimates	cataloging estimation results					
etable	table of estimation results					
*forecast	dynamic forecasts and simulations					
*hausman	Hausman's specification test					
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients					
linktest	link test for model specification					
*lrtest	likelihood-ratio test					
margins	marginal means, predictive margins, marginal effects, and average marginal effects					
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)					
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients					
predict	number of events, incidence rates, probabilities, etc.					
predictnl	point estimates, standard errors, testing, and inference for generalized predictions					
pwcompare	pairwise comparisons of estimates					
suest	seemingly unrelated estimation					
test	Wald tests of simple and composite linear hypotheses					
testnl	Wald tests of nonlinear hypotheses					

^{*}forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as numbers of events, incidence rates, probabilities, linear predictions, standard errors, and predicted values.

Menu for predict

Statistics > Postestimation

Syntax for predict

statistic	Description			
Main				
n	number of events; the default			
ir	incidence rate (equivalent to predict, n nooffset)			
pr(n)	probability $Pr(y_j = n)$			
pr(a,b)	probability $Pr(a \leq y_j \leq b)$			
xb	linear prediction			
stdp	standard error of the linear prediction			

In addition, relevant only after gnbreg are the following:

statistic	Description	
Main		
<u>a</u> lpha	predicted values of α_j	
<u>lna</u> lpha	predicted values of $\ln \alpha_j$	
$\underline{\mathtt{stdpl}}\mathtt{na}$	standard error of predicted $\ln \alpha_j$	

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

```
Main
```

n, the default, calculates the predicted number of events, which is $\exp(\mathbf{x}_j\beta)$ if neither off-set($varname_o$) nor exposure($varname_e$) was specified when the model was fit; $\exp(\mathbf{x}_j\beta)$ offset_j) if offset() was specified; or $\exp(\mathbf{x}_j\beta) \times \exp(\mathbf{x}_j\beta)$ if exposure() was specified.

ir calculates the incidence rate $\exp(\mathbf{x}_j\beta)$, which is the predicted number of events when exposure is 1. This is equivalent to specifying both the n and the nooffset options.

- pr(n) calculates the probability $Pr(y_i = n)$, where n is a nonnegative integer that may be specified as a number or a variable.
- pr(a,b) calculates the probability $Pr(a \le y_i \le b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

b missing $(b \ge .)$ means $+\infty$;

pr(20,.) calculates $Pr(y_i \ge 20)$;

pr(20,b) calculates $Pr(y_i \ge 20)$ in observations for which $b \ge .$ and calculates

 $Pr(20 \le y_i \le b)$ elsewhere.

- pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing value in that observation for pr(a,b).
- xb calculates the linear prediction, which is $x_i\beta$ if neither offset() nor exposure() was specified; $\mathbf{x}_i \boldsymbol{\beta} + \text{offset}_i$ if offset() was specified; or $\mathbf{x}_i \boldsymbol{\beta} + \text{ln}(\text{exposure}_i)$ if exposure() was specified; see nooffset below.
- stdp calculates the standard error of the linear prediction.
- alpha, lnalpha, and stdplna are relevant after gnbreg estimation only; they produce the predicted values of α_i , $\ln \alpha_i$, and the standard error of the predicted $\ln \alpha_i$, respectively.
- nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $\mathbf{x}_i \boldsymbol{\beta}$ rather than as $\mathbf{x}_i \boldsymbol{\beta} + \text{offset}_i$ or $\mathbf{x}_i \boldsymbol{\beta} + \ln(\text{exposure}_i)$. Specifying predict ..., nooffset is equivalent to specifying predict ..., ir.
- scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L/\partial(\mathbf{x}_i\beta)$.

The second new variable will contain $\partial \ln L/\partial (\ln \alpha_i)$ for dispersion(mean) and gnbreg.

The second new variable will contain $\partial \ln L/\partial (\ln \delta)$ for dispersion(constant).

margins

Description for margins

margins estimates margins of response for numbers of events, incidence rates, probabilities, linear predictions, and predicted values.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...) [ options ]
```

statistic	Description
n	number of events; the default
ir	incidence rate (equivalent to predict, n nooffset)
pr(n)	probability $Pr(y_j = n)$
pr(a,b)	probability $Pr(a \le y_j \le b)$
xb	linear prediction
stdp	not allowed with margins

In addition, relevant only after gnbreg are the following:

statistic	Description
<u>a</u> lpha <u>lna</u> lpha stdplna	predicted values of α_j predicted values of $\ln \alpha_j$ not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

stata.com

After nbreg and gnbreg, predict returns the expected number of deaths per cohort and the probability of observing the number of deaths recorded or fewer.

- . use https://www.stata-press.com/data/r18/rod93
- . nbreg deaths i.cohort, nolog

Negative binomial regression

Dispersion: mean

Log likelihood = -108.48841

Number of obs = LR chi2(2) =0.14 Prob > chi2 = 0.9307Pseudo R2 = 0.0007

	deaths	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
_	cohort 1960-1967 1968-1976	.0591305 0538792	.2978419 .2981621	0.20 -0.18	0.843 0.857	5246289 6382662	. 64289 . 5305077
	_cons	4.435906	.2107213	21.05	0.000	4.0229	4.848912
-	/lnalpha	-1.207379	.3108622			-1.816657	5980999
	alpha	.29898	.0929416			.1625683	.5498555

LR test of alpha=0: chibar2(01) = 434.62

Prob >= chibar2 = 0.000

(option **n** assumed; predicted number of events)

- . predict p, pr(0, deaths)
- . summarize deaths count p

Variable	0bs	Mean	Std. dev.	Min	Max
deaths	21	84.66667	48.84192	10	197
count	21	84.66667	4.00773	80	89.57143
р	21	.4991542	.2743702	.0070255	.9801285

The expected number of deaths ranges from 80 to 90. The probability $Pr(y_i \leq \text{deaths})$ ranges from 0.007 to 0.98.

The estimated expected and observed mean number of deaths, 84.67, happen to be the same in our example because our model included only a categorical predictor. In general, in the presence of other continuous predictors, the two estimates may not always be the same.

Methods and formulas

In the following, we use the same notation as in [R] **nbreg**.

Methods and formulas are presented under the following headings:

Mean-dispersion model Constant-dispersion model

[.] predict count

Mean-dispersion model

The equation-level scores are given by

$$score(\mathbf{x}\boldsymbol{\beta})_j = p_j(y_j - \mu_j)$$

$$score(\tau)_j = -m \left\{ \frac{\alpha_j(\mu_j - y_j)}{1 + \alpha_j \mu_j} - \ln(1 + \alpha_j \mu_j) + \psi(y_j + m) - \psi(m) \right\}$$

where $\tau_i = \ln \alpha_i$ and $\psi(z)$ is the digamma function.

Constant-dispersion model

The equation-level scores are given by

$$score(\mathbf{x}\boldsymbol{\beta})_j = m_j \left\{ \psi(y_j + m_j) - \psi(m_j) + \ln(p) \right\}$$
$$score(\tau)_j = y_j - (y_j + m_j)(1 - p) - score(\mathbf{x}\boldsymbol{\beta})_j$$

where $\tau_j = \ln \delta_j$.

Reference

Manjón, M., and O. Martínez. 2014. The chi-squared goodness-of-fit test for count-data models. *Stata Journal* 14: 798–816.

Also see

- [R] **nbreg** Negative binomial regression
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.