Postestimation commands	fracplot and fracpred
Methods and formulas	Also see

Postestimation commands

The following postestimation commands are of special interest after mfp:

Command	Description
fracplot	plot data and fit from most recently fit fractional polynomial model
fracpred	create variable containing prediction, deviance residuals, or SEs of fitted values

The following standard postestimation commands are also available if available after regression_cmd:

Command	Description
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian in- formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estimates	cataloging estimation results table of estimation results
etable	point estimates, standard errors, testing, and inference for linear combinations of coefficients
lincom	link test for model specification likelihood-ratio test
linktest	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
nlcom	Wald tests of simple and composite linear hypotheses
test	Wald tests of nonlinear hypotheses
testnl	

fracplot and fracpred

Description for fracplot and fracpred

fracplot plots the data and fit, with 95% confidence limits, from the most recently fit fractional polynomial (FP) model. The data and fit are plotted against varname, which may be $x v a r_{1}$ or another of the covariates (xvar ${ }_{2}, \ldots$, or a variable from xvarlist). If varname is not specified, xvar ${ }_{1}$ is assumed.
fracpred creates newvar containing the fitted index or deviance residuals for the whole model, or the fitted index or its standard error for varname, which may be $x^{2 v a r} r_{1}$ or another covariate.

Menu for fracplot and fracpred

fracplot

```
Statistics > Linear models and related > Fractional polynomials > Multivariable fractional polynomial plot
```


fracpred

Statistics $>$ Linear models and related $>$ Fractional polynomials $>$ Multivariable fractional polynomial prediction

Syntax for fracplot and fracpred

Plot data and fit from most recently fit fractional polynomial model
fracplot [varname] [if] [in] [, fracplot_options]

Create variable containing the prediction, deviance residuals, or SEs of fitted values
fracpred newvar [, fracpred_options]
fracplot_options Description
Plot
marker_options
change look of markers (color, size, etc.)
marker_label_options add marker labels; change look or position

Fitted line
lineopts(cline_options) affect rendition of the fitted line
Cl plot
ciopts(area_options) affect rendition of the confidence bands
Add plots
addplot (plot) add other plots to the generated graph
Y axis, X axis, Titles, Legend, Overall
twoway_options
any options other than by () documented in [G-3] twoway_options
for (varname)
dresid
stdp
compute prediction for varname
compute deviance residuals
compute standard errors of the fitted values varname
fracplot is not allowed after mfp with clogit, mlogit, or stcrreg. fracpred, dresid is not allowed after mfp with clogit, mlogit, or stcrreg.

Options for fracplot

\qquad $\longdiv { \text { Plot } }$
marker_options affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see [G-3] marker_options.
marker_label_options specify if and how the markers are to be labeled; see [G-3] marker_label_options.
\qquad Fitted line
lineopts(cline_options) affect the rendition of the fitted line; see [G-3] cline_options.
\qquad CI plot
ciopts(area_options) affect the rendition of the confidence bands; see [G-3] area_options.
$\underset{\text { addplot (plot) provides a way to add other plots to the generated graph. See [G-3] addplot_option. }}{\text { Add plots }}$

Y axis, X axis, Titles, Legend, Overall
twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Options for fracpred

for (varname) specifies (partial) prediction for variable varname. The fitted values are adjusted to the value specified by the center() option in mfp.
dresid specifies that deviance residuals be calculated.
stdp specifies calculation of the standard errors of the fitted values varname, adjusted for all the other predictors at the values specified by center().

Remarks and examples

fracplot actually produces a component-plus-residual plot. For normal-error models with constant weights and one covariate, this amounts to a plot of the observations with the fitted line inscribed. For other normal-error models, weighted residuals are calculated and added to the fitted values.

For models with additional covariates, the line is the partial linear predictor for the variable in question (xvar ${ }_{1}$ or a covariate) and includes the intercept β_{0}.

For generalized linear and Cox models, the fitted values are plotted on the scale of the "index" (linear predictor). Deviance residuals are added to the (partial) linear predictor to give component-plus-residual values. These values are plotted as small circles.

$>$ Example 1

In example 1 of $[\mathrm{R}] \mathbf{m f p}$, we used Cox regression to predict the \log hazard of breast cancer recurrence from prognostic factors of which five are continuous ($\mathrm{x} 1, \mathrm{x} 3, \mathrm{x} 5, \mathrm{x} 6, \mathrm{x} 7$) and three are binary ($\mathrm{x} 2, \mathrm{x} 4 \mathrm{a}, \mathrm{x} 4 \mathrm{~b}$). We also controlled for hormonal therapy (hormon). We used mfp to build a model from the initial set of eight predictors by using the backfitting model-selection algorithm. The nominal p-value for variable and FP selection was set to 0.05 for all variables except hormon, which is set to 1 .

```
. use https://www.stata-press.com/data/r18/brcancer
(German breast cancer data)
. stset rectime, fail(censrec)
    (output omitted)
. mfp, alpha(.05) select(.05, hormon:1): stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon,
> nohr
    (output omitted)
```

We can use fracplot to produce component-plus-residual plots of the continuous variables. We produce the component-plus-residual plot for x 1 with fracplot by specifying x 1 after the command name.

```
. fracplot x1
```

Fractional polynomial (-2 -.5), adjusted for covariates

We use fracpred with the stdp option to predict the standard error of the fractional polynomial prediction for x 1 . The standard error prediction will be stored in variable sepx1. We specify that prediction is made for x 1 with the for () option. After prediction, we use summarize to show how the standard error estimate varies over different values of x 1 .

```
. fracpred sepx1, stdp for(x1)
```

. summarize sepx1

| Variable | Obs | Mean | Std. dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| sepx1 | 686 | .0542654 | .0471993 | .0003304 | .6862065 |

Methods and formulas

The general definition of an FP, accommodating possible repeated powers, may be written for functions $H_{1}(x), \ldots, H_{m}(x)$ as

$$
\beta_{0}+\sum_{j=1}^{m} \beta_{j} H_{j}(x)
$$

where $H_{1}(x)=x^{\left(p_{1}\right)}$ and for $j=2, \ldots, m$,

$$
H_{j}(x)= \begin{cases}x^{\left(p_{j}\right)} & \text { if } p_{j} \neq p_{j-1} \\ H_{j-1}(x) \log x & \text { if } p_{j}=p_{j-1}\end{cases}
$$

For example, an FP of degree 3 with powers $(1,3,3)$ has $H_{1}(x)=x, H_{2}(x)=x^{3}$, and $H_{3}(x)=$ $x^{3} \log x$ and equals $\beta_{0}+\beta_{1} x+\beta_{2} x^{3}+\beta_{3} x^{3} \log x$.

The component-plus-residual values graphed by fracplot are calculated as follows: Let the data consist of triplets $\left(y_{i}, x_{i}, \mathbf{z}_{i}\right), i=1, \ldots, n$, where \mathbf{z}_{i} is the vector of covariates for the i th observation, after applying possible fractional polynomial transformation and adjustment as described earlier. Let $\widehat{\eta}_{i}=\widehat{\beta}_{0}+\left\{\mathbf{H}\left(x_{i}\right)-\mathbf{H}\left(x_{0}\right)\right\}^{\prime} \widehat{\boldsymbol{\beta}}+\mathbf{z}_{i}{ }_{\gamma}$ be the linear predictor from the FP model, as given by the fracpred command or, equivalently, by the predict command with the xb option, following mfp. Here $\mathbf{H}\left(x_{i}\right)=\left\{H_{1}\left(x_{i}\right), \ldots, H_{m}\left(x_{i}\right)\right\}^{\prime}$ is the vector of FP functions described above, $\mathbf{H}\left(x_{0}\right)=\left\{H_{1}\left(x_{0}\right), \ldots, H_{m}\left(x_{0}\right)\right\}^{\prime}$ is the vector of adjustments to x_{0} (often, x_{0} is chosen to be the mean of the $\left.x_{i}\right), \widehat{\boldsymbol{\beta}}$ is the estimated parameter vector, and $\widehat{\gamma}$ is the estimated parameter vector for the covariates. The values $\widehat{\eta}_{i}^{*}=\widehat{\beta}_{0}+\left\{\mathbf{H}\left(x_{i}\right)-\mathbf{H}\left(x_{0}\right)\right\}^{\prime} \widehat{\boldsymbol{\beta}}$ represent the behavior of the FP model for x at fixed values $\mathbf{z}=\mathbf{0}$ of the (adjusted) covariates. The i th component-plus-residual is defined as $\widehat{\eta}_{i}^{*}+d_{i}$, where d_{i} is the deviance residual for the i th observation. For normal-errors models, $d_{i}=\sqrt{w_{i}}\left(y_{i}-\widehat{\eta}_{i}\right)$, where w_{i} is the case weight (or 1, if weight is not specified). For logistic, Cox, and generalized linear regression models, see [R] logistic, [R] probit, [ST] stcox, and [R] glm for the formula for d_{i}. The formula for poisson models is the same as that for glm with family (poisson). For stcox, d_{i} is the partial martingale residual (see [ST] stcox postestimation).
fracplot plots the values of d_{i} and the curve represented by $\widehat{\eta}_{i}^{*}$ against x_{i}. The confidence interval for $\widehat{\eta}_{i}^{*}$ is obtained from the variance-covariance matrix of the entire model and takes into account the uncertainty in estimating $\beta_{0}, \boldsymbol{\beta}$, and γ (but not in estimating the FP powers for x).
fracpred with the for (varname) option calculates the predicted index at $x_{i}=x_{0}$ and $\mathbf{z}_{i}=\mathbf{0}$; that is, $\widehat{\eta}_{i}=\widehat{\beta}_{0}+\left\{\mathbf{H}\left(x_{i}\right)-\mathbf{H}\left(x_{0}\right)\right\}^{\prime} \widehat{\boldsymbol{\beta}}$. The standard error is calculated from the variance-covariance matrix of $\left(\widehat{\beta}_{0}, \widehat{\boldsymbol{\beta}}\right)$, again ignoring estimation of the powers.

Also see

[R] mfp - Multivariable fractional polynomial models
[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

