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Postestimation commands
The following postestimation commands are of special interest after ivregress:

Command Description

estat endogenous perform tests of endogeneity
estat firststage report “first-stage” regression statistics
estat overid perform tests of overidentifying restrictions

+estat weakrobust conduct weak-instrument–robust inference
∗estat sbknown perform tests for a structural break with a known break date
∗estat single perform tests for a structural break with an unknown break date

These commands are not appropriate with svy estimation results.
+This command is part of StataNow.
∗estat sbknown and estat sbsingle work only after ivregress 2sls.

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
†forecast dynamic forecasts and simulations
†hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict linear predictions and their SEs, probabilities, etc.
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predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

†forecast and hausman are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, residuals, standard
errors, probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

predict
[

type
]

stub*
[

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
residuals residuals
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b) under exogeneity and normal errors
e(a,b) E(yj | a < yj < b) under exogeneity and normal errors
ystar(a,b) E(y∗j ), y

∗
j = max{a,min(yj , b)} under exogeneity and normal errors

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, that is, yj−xjb. These are based on the estimated equation when
the observed values of the endogenous variables are used—not the projections of the instruments
onto the endogenous variables.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. This is also referred
to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b) under exogeneity and assuming errors are normally distributed.

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated. a and b are specified as they
are for pr(). Exogeneity and normally distributed errors are assumed.

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb + uj otherwise, meaning that y∗j is censored. a and b are specified as they are for
pr(). Exogeneity and normally distributed errors are assumed.

scores calculates the scores for the model. A new score variable is created for each endogenous
regressor, as well as an equation-level score that applies to all exogenous variables and constant
term (if present).

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimationMethodsandformulas
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
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margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

xb linear prediction; the default
pr(a,b) Pr(a < yj < b) under exogeneity and normal errors
e(a,b) E(yj | a < yj < b) under exogeneity and normal errors
ystar(a,b) E(y∗j ), y

∗
j = max{a,min(yj , b)} under exogeneity and normal errors

stdp not allowed with margins

stdf not allowed with margins

residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
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estat

Description for estat

estat endogenous performs tests to determine whether endogenous regressors in the model are
in fact exogenous. After GMM estimation, the C (difference-in-Sargan) statistic is reported. After 2SLS
estimation with an unadjusted VCE, the Durbin (1954) and Wu–Hausman (Wu 1974; Hausman 1978)
statistics are reported. After 2SLS estimation with a robust VCE, Wooldridge’s (1995) robust score test
and a robust regression-based test are reported. In all cases, if the test statistic is significant, then the
variables being tested must be treated as endogenous. estat endogenous is not available after LIML
estimation.

estat firststage reports various statistics that measure the relevance of the excluded exogenous
variables. By default, which statistics are reported depends on whether the equation has one or more
than one endogenous regressor.

estat overid performs tests of overidentifying restrictions. If the 2SLS estimator was used,
Sargan’s (1958) and Basmann’s (1960) χ2 tests are reported, as is Wooldridge’s (1995) robust score
test; if the LIML estimator was used, Anderson and Rubin’s (1950) χ2 test and Basmann’s F test are
reported; and if the GMM estimator was used, Hansen’s (1982) J statistic χ2 test is reported. In all
of these cases, a rejection of the test indicates that the instruments may not be valid.

estat weakrobust is part of StataNow. It performs hypothesis tests on the coefficients of
endogenous regressors that are robust to weak instruments. For just-identified models, the Anderson–
Rubin (1949) test is reported. For overidentified models, if a homoskedastic VCE was used in estimation,
the conditional likelihood-ratio (CLR) test of Moreira (2003) is reported. If a heteroskedastic or cluster–
robust VCE was used instead, an appropriate generalization of the CLR test is used (see Finlay and
Magnusson [2009]). When there is only one endogenous regressor, the confidence intervals associated
with any of these tests can be requested.

Menu for estat

Statistics > Postestimation

Syntax for estat

Perform tests of endogeneity

estat endogenous
[

varlist
] [

, lags(#) forceweights forcenonrobust
]

Report “first-stage” regression statistics

estat firststage
[
, all forcenonrobust

]
Perform tests of overidentifying restrictions

estat overid
[
, lags(#) forceweights forcenonrobust

]
Conduct weak-instrument–robust inference (StataNow)

estat weakrobust
[
, weak options

]

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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weak options Description

betanull(null spec) specify the null hypothesis on the endogenous regressors
ar perform Anderson–Rubin test
clr perform conditional likelihood-ratio test
ci report confidence interval instead of test
level(#) set confidence level; default is level(95)

reps(#) perform # replications for simulations; default is reps(25000)

rseed(#) set random-number seed for simulations to #
bound(#min #max) specify bounds of confidence interval grid
ngrid(#) use # grid points for the confidence interval; default is ngrid(500)

noadaptgrid suppress adaptive grid expansion[
no
]
log suppress or display the iteration log

iterate(#) perform maximum of # adaptive iterations; default is iterate(20)

collect is allowed with estat endogenous, estat firststage, estat overid, and estat weakrobust; see
[U] 11.1.10 Prefix commands.

Options for estat

Options for estat are presented under the following headings:
Options for estat endogenous
Options for estat firststage
Options for estat overid
Options for estat weakrobust (StataNow)

Options for estat endogenous

lags(#) specifies the number of lags to use for prewhitening when computing the heteroskedasticity-
and autocorrelation-consistent (HAC) version of the score test of endogeneity. Specifying lags(0)
requests no prewhitening. This option is valid only when the model was fit via 2SLS and an HAC
covariance matrix was requested when the model was fit. The default is lags(1).

forceweights requests that the tests of endogeneity be computed even though aweights, pweights,
or iweights were used in the previous estimation. By default, these tests are conducted only after
unweighted or frequency-weighted estimation. The reported critical values may be inappropriate
for weighted data, so the user must determine whether the critical values are appropriate for a
given application.

forcenonrobust requests that the Durbin and Wu–Hausman tests be performed after 2SLS estimation
even though a robust VCE was used at estimation time. This option is available only if the model
was fit by 2SLS.

Options for estat firststage

all requests that all first-stage goodness-of-fit statistics be reported regardless of whether the model
contains one or more endogenous regressors. By default, if the model contains one endogenous
regressor, then the first-stage R2, adjusted R2, partial R2, and F statistics are reported, whereas
if the model contains multiple endogenous regressors, then Shea’s partial R2 and adjusted partial
R2 are reported instead.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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forcenonrobust requests that the minimum eigenvalue statistic and its critical values be reported
even though a robust VCE was used at estimation time. The reported critical values assume that
the errors are independent and identically distributed (i.i.d.) normal, so the user must determine
whether the critical values are appropriate for a given application.

Options for estat overid

lags(#) specifies the number of lags to use for prewhitening when computing the heteroskedasticity-
and autocorrelation-consistent (HAC) version of the score test of overidentifying restrictions.
Specifying lags(0) requests no prewhitening. This option is valid only when the model was fit
via 2SLS and an HAC covariance matrix was requested when the model was fit. The default is
lags(1).

forceweights requests that the tests of overidentifying restrictions be computed even though
aweights, pweights, or iweights were used in the previous estimation. By default, these tests
are conducted only after unweighted or frequency-weighted estimation. The reported critical values
may be inappropriate for weighted data, so the user must determine whether the critical values are
appropriate for a given application.

forcenonrobust requests that the Sargan and Basmann tests of overidentifying restrictions be
performed after 2SLS or LIML estimation even though a robust VCE was used at estimation time.
These tests assume that the errors are i.i.d. normal, so the user must determine whether the critical
values are appropriate for a given application.

Options for estat weakrobust (StataNow)

betanull(null spec) specifies the null hypothesis of the test on the coefficients of the endogenous
regressors. By default, the null hypothesis is that the coefficients of all endogenous regressors are
zero. The null hypothesis can be specified using numlist, a list of equalities, or a matrix. When
using numlist, you must specify the null values for all endogenous regressors in the order given
in the estimation command and specify the copy suboption if there is more than one endogenous
regressor. When you use a list of equalities or a matrix, null values are set to zero for endogenous
regressors you did not specify. When you use a matrix, null values are assigned to coefficients by
matrix column names.

null spec is one of

#
[

# . . . , copy
]

varname = #
[

varname = #
[
. . .
] ] [

, skip
]

matname
[
, skip copy

]
skip specifies that any variables that are not endogenous regressors in the model be ignored.

The default action is to issue an error message.

copy specifies that the list of null values be assigned into the null hypothesis by position rather
than by name.

ar requests that an Anderson–Rubin test be performed. The associated confidence interval of the
test can be requested with option ci. By default, the Anderson–Rubin test is performed when the
model is just identified. If both ar and clr are specified, both tests are performed.

clr requests that a CLR test be performed. The associated confidence interval of the test can be
requested with option ci. By default, a CLR test is performed when the model is overidentified.
If both ar and clr are specified, both tests are performed.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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ci requests that a confidence interval be returned instead of a test statistic and a p-value. This applies
to all tests specified by the user. Option ci is available only when there is a single endogenous
regressor.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

reps(#) specifies the number of replications to use in simulating critical values when p-values cannot
be computed analytically. The default is reps(25000).

rseed(#) sets the random-number seed. This option can be used to reproduce results for simulating
critical values when p-values cannot be computed analytically. rseed(#) is equivalent to typing
set seed # prior to calling estat weakrobust; see [R] set seed.

bound(#min #max) specifies the lower (#min) and the upper bound (#max) for the grid used
to approximate confidence intervals when they cannot be computed analytically. The specified
bounds will be the starting bounds for the adaptive grid expansion procedure or, if noadaptgrid
is specified, the fixed bounds of the grid. By default, the lower bound is set to five standard errors
below the coefficient estimated by ivregress, and the upper bound is five standard errors above.

ngrid(#) specifies the starting number of gridpoints for approximating confidence intervals. The
default is ngrid(500). Higher values will increase computation time but improve precision, which
may be helpful when the confidence interval is wide. If noadaptgrid is specified, ngrid() specifies
the fixed number of gridpoints.

noadaptgrid requests that the default method for computing confidence intervals, where the grid is
adaptively expanded, be turned off and the interval be estimated with a fixed grid. noadaptgrid
is equivalent to specifying iterate(0).

log and nolog specify whether to display the iteration log showing the progress of the adaptive
gridding procedure. The iteration log is displayed by default unless you used set iterlog off
to suppress it; see set iterlog in [R] set iter.

iterate(#) specifies the maximum number of iterations for the adaptive grid expansion procedure.
Each iteration expands the grid by half the width of the starting bounds in each direction, and
the procedure stops when the maximum number of iterations is reached or when the confidence
interval has finite endpoints and was unchanged by the most recent expansion. The default is
iterate(20).

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u20.pdf#u20.8Specifyingthewidthofconfidenceintervals
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
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Remarks and examples stata.com

Remarks are presented under the following headings:

estat endogenous
estat firststage
estat overid
estat weakrobust (StataNow)

estat endogenous

A natural question to ask is whether a variable presumed to be endogenous in the previously fit
model could instead be treated as exogenous. If the endogenous regressors are in fact exogenous,
then the OLS estimator is more efficient; and depending on the strength of the instruments and other
factors, the sacrifice in efficiency by using an instrumental-variables estimator can be significant.
Thus, unless an instrumental-variables estimator is really needed, OLS should be used instead. estat
endogenous provides several tests of endogeneity after 2SLS and GMM estimation.

Example 1

In example 1 of [R] ivregress, we fit a model of the average rental rate for housing in a state as
a function of the percentage of the population living in urban areas and the average value of houses.
We treated hsngval as endogenous because unanticipated shocks that affect rental rates probably
affect house prices as well. We used family income and region dummies as additional instruments
for hsngval. Here we test whether we could treat hsngval as exogenous.

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat endogenous

Tests of endogeneity
H0: Variables are exogenous

Durbin (score) chi2(1) = 12.8473 (p = 0.0003)
Wu-Hausman F(1,46) = 15.9067 (p = 0.0002)

Because we did not specify any variable names after the estat endogenous command, Stata by
default tested all the endogenous regressors (namely, hsngval) in our model. The null hypothesis
of the Durbin and Wu–Hausman tests is that the variable under consideration can be treated as
exogenous. Here both test statistics are highly significant, so we reject the null of exogeneity; we
must continue to treat hsngval as endogenous.

The difference between the Durbin and Wu–Hausman tests of endogeneity is that the former uses
an estimate of the error term’s variance based on the model assuming the variables being tested
are exogenous, while the latter uses an estimate of the error variance based on the model assuming
the variables being tested are endogenous. Under the null hypothesis that the variables being tested
are exogenous, both estimates of the error variance are consistent. What we label the Wu–Hausman
statistic is Wu’s (1974) “T2” statistic, which Hausman (1978) showed can be calculated very easily
via linear regression. Baum, Schaffer, and Stillman (2003, 2007) provide a lucid discussion of these
tests.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
http://stata.com
https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesex_ivregress_2sls
https://www.stata.com/manuals/rivregress.pdf#rivregress


10 ivregress postestimation — Postestimation tools for ivregress+

When you fit a model with multiple endogenous regressors, you can test the exogeneity of a subset
of the regressors while continuing to treat the others as endogenous. For example, say you have three
endogenous regressors, y1, y2, and y3, and you fit your model by typing

. ivregress depvar . . . (y1 y2 y3 = . . .)

Suppose you are confident that y1 must be treated as endogenous, but you are undecided about y2
and y3. To test whether y2 and y3 can be treated as exogenous, you would type

. estat endogenous y2 y3

The Durbin and Wu–Hausman tests assume that the error term is i.i.d. Therefore, if you requested
a robust VCE at estimation time, estat endogenous will instead report Wooldridge’s (1995) score
test and a regression-based test of exogeneity. Both these tests can tolerate heteroskedastic and
autocorrelated errors, while only the regression-based test is amenable to clustering.

Example 2

We refit our housing model, requesting robust standard errors, and then test the exogeneity of
hsngval:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat endogenous

Tests of endogeneity
H0: Variables are exogenous

Robust score chi2(1) = 2.10428 (p = 0.1469)
Robust regression F(1,46) = 4.31101 (p = 0.0435)

Wooldridge’s score test does not reject the null hypothesis that hsngval is exogenous at conventional
significance levels (p = 0.1469). However, the regression-based test does reject the null hypothesis at
the 5% significance level (p = 0.0435). Typically, these two tests yield the same conclusion; the fact
that our dataset has only 50 observations could be contributing to the discrepancy. Here we would
be inclined to continue to treat hsngval as endogenous. Even if hsngval is exogenous, the 2SLS
estimates are still consistent. On the other hand, if hsngval is in fact endogenous, the OLS estimates
would not be consistent. Moreover, as we will see in our discussion of the estat overid command,
our additional instruments may be invalid. To test whether an endogenous variable can be treated as
exogenous, we must have a valid set of instruments to use to fit the model in the first place!

Unlike the Durbin and Wu–Hausman tests, Wooldridge’s score and the regression-based tests do
not allow you to test a subset of the endogenous regressors in the model; you can test only whether
all the endogenous regressors are in fact exogenous.

After GMM estimation, estat endogenous calculates what Hayashi (2000, 220) calls the C
statistic, also known as the difference-in-Sargan statistic. The C statistic can be made robust to
heteroskedasticity, autocorrelation, and clustering; and the version reported by estat endogenous
is determined by the weight matrix requested via the wmatrix() option used when fitting the model
with ivregress. Additionally, the test can be used to determine the exogeneity of a subset of the
endogenous regressors, regardless of the type of weight matrix used.

If you fit your model using the LIML estimator, you can use the hausman command to carry out
a traditional Hausman (1978) test between the OLS and LIML estimates.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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estat firststage

For an excluded exogenous variable to be a valid instrument, it must be sufficiently correlated with
the included endogenous regressors but uncorrelated with the error term. In recent decades, researchers
have paid considerable attention to the issue of instruments that are only weakly correlated with the
endogenous regressors. In such cases, the usual 2SLS, GMM, and LIML estimators are biased toward the
OLS estimator, and inference based on the standard errors reported by, for example, ivregress can be
severely misleading. For more information on the theory behind instrumental-variables estimation with
weak instruments, see Nelson and Startz (1990); Staiger and Stock (1997); Hahn and Hausman (2003);
the survey article by Stock, Wright, and Yogo (2002); and Angrist and Pischke (2009, chap. 4).

When the instruments are only weakly correlated with the endogenous regressors, some Monte
Carlo evidence suggests that the LIML estimator performs better than the 2SLS and GMM estimators;
see, for example, Poi (2006) and Stock, Wright, and Yogo (2002) (and the papers cited therein). On
the other hand, the LIML estimator often results in confidence intervals that are somewhat larger than
those from the 2SLS estimator.

Moreover, using more instruments is not a solution, because the biases of instrumental-variables
estimators increase with the number of instruments. See Hahn and Hausman (2003).

estat firststage produces several statistics for judging the explanatory power of the instruments
and is most easily explained with examples.

Example 3

Again building on the model fit in example 1 of [R] ivregress, we now explore the degree of
correlation between the additional instruments faminc, 2.region, 3.region, and 4.region and
the endogenous regressor hsngval:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat firststage

First-stage regression summary statistics

Adjusted Partial
Variable R-sq. R-sq. R-sq. F(4,44) Prob > F

hsngval 0.6908 0.6557 0.5473 13.2978 0.0000

Minimum eigenvalue statistic = 13.2978

Critical Values # of endogenous regressors: 1
H0: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 16.85 10.27 6.71 5.34

10% 15% 20% 25%
2SLS size of nominal 5% Wald test 24.58 13.96 10.26 8.31
LIML size of nominal 5% Wald test 5.44 3.87 3.30 2.98

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesex_ivregress_2sls
https://www.stata.com/manuals/rivregress.pdf#rivregress
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To understand these results, recall that the first-stage regression is

hsngvali = π0 + π1pcturbani + π2faminc+ π32.region+ π43.region+ π54.region+ vi

where vi is an error term. The column marked “R-sq.” is the simple R2 from fitting the first-stage
regression by OLS, and the column marked “Adjusted R-sq.” is the adjusted R2 from that regression.
Higher values purportedly indicate stronger instruments, and instrumental-variables estimators exhibit
less bias when the instruments are strongly correlated with the endogenous variable.

Looking at just the R2 and adjusted R2 can be misleading, however. If hsngval were strongly
correlated with the included exogenous variable pcturban but only weakly correlated with the
additional instruments, then these statistics could be large even though a weak-instrument problem is
present.

The partial R2 statistic measures the correlation between hsngval and the additional instruments
after partialing out the effect of pcturban. Unlike the R2 and adjusted R2 statistics, the partial R2

statistic will not be inflated because of strong correlation between hsngval and pcturban. Bound,
Jaeger, and Baker (1995) and others have promoted using this statistic.

The column marked “F(4, 44)” is an F statistic for the joint significance of π2, π3, π4, and π5,
the coefficients on the additional instruments. Its p-value is listed in the column marked “Prob > F”.
If the F statistic is not significant, then the additional instruments have no significant explanatory
power for hsngval after controlling for the effect of pcturban. However, Hall, Rudebusch, and
Wilcox (1996) used Monte Carlo simulation to show that simply having an F statistic that is significant
at the typical 5% or 10% level is not sufficient. Stock, Wright, and Yogo (2002) suggest that the F
statistic should exceed 10 for inference based on the 2SLS estimator to be reliable when there is one
endogenous regressor.

estat firststage also presents the Cragg and Donald (1993) minimum eigenvalue statistic as
a further test of weak instruments. Stock and Yogo (2005) discuss two characterizations of weak
instruments: first, weak instruments cause instrumental-variables estimators to be biased; second,
hypothesis tests of parameters estimated by instrumental-variables estimators may suffer from severe
size distortions. The test statistic in our example is 13.30, which is identical to the F statistic just
discussed because our model contains one endogenous regressor.

The null hypothesis of each of Stock and Yogo’s tests is that the set of instruments is weak. To
perform these tests, we must first choose either the largest relative bias of the 2SLS estimator we are
willing to tolerate or the largest rejection rate of a nominal 5% Wald test we are willing to tolerate.
If the test statistic exceeds the critical value, we can conclude that our instruments are not weak.

The row marked “2SLS relative bias” contains critical values for the test that the instruments are
weak based on the bias of the 2SLS estimator relative to the bias of the OLS estimator. For example,
from past experience we might know that the OLS estimate of a parameter β may be 50% too high.
Saying that we are willing to tolerate a 10% relative bias means that we are willing to tolerate a
bias of the 2SLS estimator no greater than 5% (that is, 10% of 50%). In our rental rate model, if we
are willing to tolerate a 10% relative bias, then we can conclude that our instruments are not weak
because the test statistic of 13.30 exceeds the critical value of 10.27. However, if we were willing
to tolerate only a relative bias of 5%, we would conclude that our instruments are weak because
13.30 < 16.85.

The rows marked “2SLS Size of nominal 5% Wald test” and “LIML Size of nominal 5% Wald
test” contain critical values pertaining to Stock and Yogo’s (2005) second characterization of weak
instruments. This characterization defines a set of instruments to be weak if a Wald test at the 5% level
can have an actual rejection rate of no more than 10%, 15%, 20%, or 25%. Using the current example,
suppose that we are willing to accept a rejection rate of at most 10%. Because 13.30 < 24.58, we
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cannot reject the null hypothesis of weak instruments. On the other hand, if we use the LIML estimator
instead, then we can reject the null hypothesis because 13.30 > 5.44.

Technical note
Stock and Yogo (2005) tabulated critical values for 2SLS relative biases of 5%, 10%, 20%, and

30% for models with 1, 2, or 3 endogenous regressors and between 3 and 30 excluded exogenous
variables (instruments). They also provide critical values for worst-case rejection rates of 5%, 10%,
20%, and 25% for nominal 5% Wald tests of the endogenous regressors with 1 or 2 endogenous
regressors and between 1 and 30 instruments. If the model previously fit by ivregress has more
instruments or endogenous regressors than these limits, the critical values are not shown. Stock and
Yogo did not consider GMM estimators.

When the model being fit contains more than one endogenous regressor, the R2 and F statistics
described above can overstate the relevance of the excluded instruments. Suppose that there are two
endogenous regressors, Y1 and Y2, and that there are two additional instruments, z1 and z2. Say that
z1 is highly correlated with both Y1 and Y2 but z2 is not correlated with either Y1 or Y2. Then, the
first-stage regression of Y1 on z1 and z2 (along with the included exogenous variables) will produce
large R2 and F statistics, as will the regression of Y2 on z1, z2, and the included exogenous variables.
Nevertheless, the lack of correlation between z2 and Y1 and Y2 is problematic. Here, although the
order condition indicates that the model is just identified (the number of excluded instruments equals
the number of endogenous regressors), the irrelevance of z2 implies that the model is in fact not
identified. Even if the model is overidentified, including irrelevant instruments can adversely affect
the properties of instrumental-variables estimators, because their biases increase as the number of
instruments increases.

Example 4

estat firststage presents different statistics when the model contains multiple endogenous
regressors. For illustration, we refit our model of rental rates, assuming that both hsngval and faminc
are endogenously determined. We use i.region along with popden, a measure of population density,
as additional instruments.
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. ivregress 2sls rent pcturban (hsngval faminc = i.region popden)
(output omitted )

. estat firststage

Shea’s partial R-squared

Shea’s Shea’s
Variable partial R-sq. adj. partial R-sq.

hsngval 0.3477 0.2735
faminc 0.1893 0.0972

Minimum eigenvalue statistic = 2.51666

Critical Values # of endogenous regressors: 2
H0: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 11.04 7.56 5.57 4.73

10% 15% 20% 25%
2SLS size of nominal 5% Wald test 16.87 9.93 7.54 6.28
LIML size of nominal 5% Wald test 4.72 3.39 2.99 2.79

Consider the endogenous regressor hsngval. Part of its variation is attributable to its correlation
with the other regressors pcturban and faminc. The other component of hsngval’s variation is
peculiar to it and orthogonal to the variation in the other regressors. Similarly, we can think of the
instruments as predicting the variation in hsngval in two ways, one stemming from the fact that
the predicted values of hsngval are correlated with the predicted values of the other regressors and
one from the variation in the predicted values of hsngval that is orthogonal to the variation in the
predicted values of the other regressors.

What really matters for instrumental-variables estimation is whether the component of hsngval
that is orthogonal to the other regressors can be explained by the component of the predicted value of
hsngval that is orthogonal to the predicted values of the other regressors in the model. Shea’s (1997)
partial R2 statistic measures this correlation. Because the bias of instrumental-variables estimators
increases as more instruments are used, Shea’s adjusted partial R2 statistic is often used instead, as
it makes a degrees-of-freedom adjustment for the number of instruments, analogous to the adjusted
R2 measure used in OLS regression. Although what constitutes a “low” value for Shea’s partial R2

depends on the specifics of the model being fit and the data used, these results, taken in isolation, do
not strike us as being a particular cause for concern.

However, with this specification the minimum eigenvalue statistic is low. We cannot reject the null
hypothesis of weak instruments for either of the characterizations we have discussed.

By default, estat firststage determines which statistics to present based on the number of
endogenous regressors in the model previously fit. However, you can specify the all option to obtain
all the statistics.

Technical note

If the previous estimation was conducted using aweights, pweights, or iweights, then the
first-stage regression summary statistics are computed using those weights. However, in these cases
the minimum eigenvalue statistic and its critical values are not available.
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If the previous estimation included a robust VCE, then the first-stage F statistic is based on a
robust VCE as well; for example, if you fit your model with an HAC VCE using the Bartlett kernel
and four lags, then the F statistic reported is based on regression results using an HAC VCE using the
Bartlett kernel and four lags. By default, the minimum eigenvalue statistic and its critical values are
not displayed. You can use the forcenonrobust option to obtain them in these cases; the minimum
eigenvalue statistic is computed using the weights, though the critical values reported may not be
appropriate.

estat overid
In addition to the requirement that instrumental variables be correlated with the endogenous

regressors, the instruments must also be uncorrelated with the structural error term. If the model is
overidentified, meaning that the number of additional instruments exceeds the number of endogenous
regressors, then we can test whether the instruments are uncorrelated with the error term. If the model
is just identified, then we cannot perform a test of overidentifying restrictions.

The estimator you used to fit the model determines which tests of overidentifying restrictions
estat overid reports. If you used the 2SLS estimator without a robust VCE, estat overid reports
Sargan’s (1958) and Basmann’s (1960) χ2 tests. If you used the 2SLS estimator and requested a robust
VCE, Wooldridge’s robust score test of overidentifying restrictions is performed instead; without a
robust VCE, Wooldridge’s test statistic is identical to Sargan’s test statistic. If you used the LIML
estimator, estat overid reports the Anderson–Rubin (1950) likelihood-ratio test and Basmann’s
(1960) F test. estat overid reports Hansen’s (1982) J statistic if you used the GMM estimator.
Davidson and MacKinnon (1993, 235–236) give a particularly clear explanation of the intuition behind
tests of overidentifying restrictions. Also see Judge et al. (1985, 614–616) for a summary of tests of
overidentifying restrictions for the 2SLS and LIML estimators.

Tests of overidentifying restrictions actually test two different things simultaneously. One, as we
have discussed, is whether the instruments are uncorrelated with the error term. The other is that the
equation is misspecified and that one or more of the excluded exogenous variables should in fact be
included in the structural equation. Thus, a significant test statistic could represent either an invalid
instrument or an incorrectly specified structural equation.

Example 5

Here we refit the model that treated just hsngval as endogenous using 2SLS, and then we perform
tests of overidentifying restrictions:

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat overid

Tests of overidentifying restrictions:

Sargan (score) chi2(3) = 11.2877 (p = 0.0103)
Basmann chi2(3) = 12.8294 (p = 0.0050)

Both test statistics are significant at the 5% test level, which means that either one or more of our
instruments are invalid or that our structural model is specified incorrectly.

One possibility is that the error term in our structural model is heteroskedastic. Both Sargan’s and
Basmann’s tests assume that the errors are i.i.d.; if the errors are not i.i.d., then these tests are not
valid. Here we refit the model by requesting heteroskedasticity-robust standard errors, and then we
use estat overid to obtain Wooldridge’s score test of overidentifying restrictions, which is robust
to heteroskedasticity.
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. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat overid

Test of overidentifying restrictions:

Score chi2(3) = 6.8364 (p = 0.0773)

Here we no longer reject the null hypothesis that our instruments are valid at the 5% significance
level, though we do reject the null at the 10% level. You can verify that the robust standard error
on the coefficient for hsngval is more than twice as large as its nonrobust counterpart and that the
robust standard error for pcturban is nearly 50% larger.

Technical note
The test statistic for the test of overidentifying restrictions performed after GMM estimation is simply

the sample size times the value of the objective function Q(β1,β2) defined in (5) of [R] ivregress,
evaluated at the GMM parameter estimates. If the weighting matrix W is optimal, meaning that

W = Var (ziui), then Q(β1,β2)
A∼χ2(q), where q is the number of overidentifying restrictions.

However, if the estimated W is not optimal, then the test statistic will not have an asymptotic χ2

distribution.

Like the Sargan and Basmann tests of overidentifying restrictions for the 2SLS estimator, the
Anderson–Rubin and Basmann tests after LIML estimation are predicated on the errors’ being i.i.d. If
the previous LIML results were reported with robust standard errors, then estat overid by default
issues an error message and refuses to report the Anderson–Rubin and Basmann test statistics. You
can use the forcenonrobust option to override this behavior. You can also use forcenonrobust
to obtain the Sargan and Basmann test statistics after 2SLS estimation with robust standard errors.

By default, estat overid issues an error message if the previous estimation was conducted using
aweights, pweights, or iweights. You can use the forceweights option to override this behavior,
though the test statistics may no longer have the expected χ2 distributions.

estat weakrobust (StataNow)

Instrumental-variables methods require that the instruments be correlated with the endogenous
regressors. In principle, this is a low bar: even instruments only weakly correlated with the endogenous
regressors allow for valid asymptotic inference using standard instrumental-variables methods. But
weak instruments can lead to misleading inference in practice, even in relatively large samples. This
is especially the case when models are overidentified or there is a high degree of endogeneity.

When instruments are weak, first-stage coefficients are small relative to the variance of their
estimates. This causes the distribution of instrumental-variables estimators to be highly nonnormal
and thus poorly approximated by standard inference methods. (See Andrews, Stock, and Sun [2019].)

The linear instrumental-variables model fit by ivregress is written in matrix form as

y = Yβ1 + X1β2 + u

Y = X1Π1 + X2Π2 + V
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where y is a vector with the values of the dependent variable in the sample, Y is a matrix of
endogenous regressors, X1 is a matrix of included exogenous regressors, and X2 is a matrix of
excluded exogenous regressors. The first equation is referred to as the structural equation, and the
second equation is referred to as the first-stage equation. By substituting the endogenous regressors
Y into the structural equation and reparameterizing, we derive the reduced-form equation

y = X1δ1 + X2δ2 + ε

where δ1 ≡ Π1β1 + β2 and δ2 ≡ Π2β1.

The principle of the tests performed by estat weakrobust is that the reduced-form and first-stage
equations are free of endogeneity. The estimates of δ1, δ2, Π1, and Π2 can be tested for consistency
with a null hypothesis about β1, our parameter of interest. (In practice, the exogenous covariates X2

are partialled out for simplicity.) estat weakrobust performs tests of the form β1 = r1, where r1
is a constant vector of the same dimension as β1.

When the model is just identified, meaning there are no more instruments than there are endogenous
regressors, the test of Anderson and Rubin (1949), or the associated confidence interval, is reported
by default. When the model has been fit with a heteroskedastic, cluster–robust, or HAC VCE, an
appropriate version of the Anderson–Rubin test or confidence interval is reported. In all cases, the
Anderson–Rubin test statistic takes on a χ2 distribution, and critical values and p-values can be
exactly computed.

When the model is overidentified and has been fit with a homoskedastic VCE, the CLR test of
Moreira (2003), or its associated confidence interval, is reported by default. The CLR test has better
power properties than the Anderson–Rubin test in the overidentified case. When the model is fit with
a nonhomoskedastic VCE, a generalization of the CLR test proposed by Finlay and Magnusson (2009)
is used. This test is equivalent to the GMM quasi-LR statistic of Kleibergen (2007) in the linear
instrumental-variables case considered here.

Regardless of the VCE specified, the CLR test statistic has a nonstandard distribution. However,
when the model has been fit with a homoskedastic VCE and there is only a single endogenous regressor,
the p-value for the CLR statistic can be computed exactly using the method of Andrews, Moreira,
and Stock (2007). Otherwise, the p-value for the CLR test statistic is obtained by simulation.

Both the Anderson–Rubin and the CLR tests (and their CIs) can be requested for any model, even
though only one test (or CI) is computed and reported by default. In the just-identified case, the CLR
test is equivalent to the Anderson–Rubin test.

Example 6

We revisit the model of average rental rate as a function of average housing values and the
proportion of the population living in urban areas, this time supposing we do not have access to
faminc, the variable for median family income. We may suspect that our region indicator variables
are weak instruments for hsngval and therefore conduct weak-instrument–robust inference using
estat weakrobust.
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. ivregress 2sls rent pcturban (hsngval = i.region), vce(robust)
(output omitted )

. estat weakrobust, rseed(12345)

Weak-instrument--robust test
Model VCE: Robust

( 1) hsngval = 0

Cond. likelihood-ratio (CLR) test = 5.48
Prob > CLR = 0.0255

Notes: CLR test reported by default because
model is overidentified.
p-value computed by simulation
(25,000 replications).

Here estat weakrobust reports a CLR test because there are more instruments than there are
endogenous regressors. We find evidence to reject the null hypothesis that the coefficient on hsngval
is zero, but the p-value is substantially larger than the p-value of 0.003 that is reported by ivregress.
Note that because the model is fit with a nonhomoskedastic VCE and a CLR test is being reported,
the p-value is computed by simulation. We have included a random-number seed using the rseed()
option for reproducibility, but this is optional.

We can request a weak-instrument–robust confidence interval for hsngval with the ci option:

. estat weakrobust, ci rseed(12345)

Searching for CI bounds:
Iteration 0: Grid points = 500
Iteration 1: Grid points = 1,000

(CI computed using 1,000 grid points on [-.003591, .006664])

Weak-instrument--robust inference
Model VCE: Robust

CLR
Coefficient [95% conf. interval]

hsngval .0015365 .0002263 .002857

Notes: CLR CI reported by default because model is
overidentified.
Computed using simulation (25,000
replications).

The confidence interval comes close to containing zero. Indeed, if we specified a confidence level
of 99% using level(99), zero would be included. Accounting for the possibility of weak instruments,
we may conclude that we cannot rule out a zero coefficient on hsngval.

The ci option, which computes Anderson–Rubin and CLR confidence intervals, is available only
in the single-endogenous regressor case. When the model has been fit with a homoskedastic VCE or
is just identified, confidence intervals can be computed directly by inverting the relevant test. When
the model has been fit with a nonhomoskedastic VCE and is overidentified, there is no closed form
for the endpoints of the conditional likelihood confidence interval, so a gridding procedure is used to
estimate the confidence intervals.

The coefficient on the endogenous regressor, as fit by ivregress, is reported next to the confidence
interval in the output of estat weakrobust, ci for reference. However, there is generally no guarantee
that the estimated coefficient will be contained in the reported confidence interval. An exception is
that when the model has been fit with homoskedastic errors, the CLR confidence set will contain the
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LIML estimator. In the just-identified case, the Anderson–Rubin confidence set will also contain the
LIML estimator. See Moreira (2003) for a discussion.

Technical note
Unlike conventional confidence intervals, the confidence “intervals” produced by inverting

Anderson–Rubin and CLR tests are not always finite intervals and may not be intervals at all.
Confidence intervals can take one of five forms:

1. Finite interval [a, b]. When instruments are strong and the model is well identified, both
Anderson–Rubin and CLR confidence intervals typically take this form.

2. Union of finite intervals [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [am, bm]. Confidence intervals can take this
form when the model VCE is nonhomoskedastic.

3. Union of (possibly infinite) intervals (−∞, b1] ∪ . . . ∪ [am,+∞). Confidence sets may take
this form when instruments are weak. When the model VCE is homoskedastic, this form may
only be the union of two infinite intervals.

4. Real line (−∞,+∞). Confidence sets may take this form when instruments are weak.

5. Empty set ∅. An empty confidence interval means the weak-instrument–robust test rejects
every possible null value for the endogenous regressor, thus rejecting the model. The only
case in which the model can be rejected in this way is when the model is overidentified and
an Anderson–Rubin confidence interval is used. In other cases, an empty confidence interval
means the grid used to estimate the confidence interval was too narrow, and the bounds should
be widened using the bound() option.

For detailed discussion of unconventional confidence intervals in weak-instrument–robust inference,
see Mikusheva and Poi (2006), Mikusheva (2010), and Kleibergen (2007).

Stored results
After 2SLS estimation, estat endogenous stores the following in r():
Scalars

r(durbin) Durbin χ2 statistic
r(p durbin) p-value for Durbin χ2 statistic
r(wu) Wu–Hausman F statistic
r(p wu) p-value for Wu–Hausman F statistic
r(df) degrees of freedom
r(wudf r) denominator degrees of freedom for Wu–Hausman F

r(r score) robust score statistic
r(p r score) p-value for robust score statistic
r(hac score) HAC score statistic
r(p hac score) p-value for HAC score statistic
r(lags) lags used in prewhitening
r(regF) regression-based F statistic
r(p regF) p-value for regression-based F statistic
r(regFdf n) regression-based F numerator degrees of freedom
r(regFdf r) regression-based F denominator degrees of freedom

After GMM estimation, estat endogenous stores the following in r():
Scalars

r(C) C χ2 statistic
r(p C) p-value for C χ2 statistic
r(df) degrees of freedom
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estat firststage stores the following in r():

Scalars
r(mineig) minimum eigenvalue statistic

Matrices
r(mineigcv) critical values for minimum eigenvalue statistic
r(multiresults) Shea’s partial R2 statistics
r(singleresults) first-stage R2 and F statistics

After 2SLS estimation, estat overid stores the following in r():

Scalars
r(lags) lags used in prewhitening
r(df) χ2 degrees of freedom
r(score) score χ2 statistic
r(p score) p-value for score χ2 statistic
r(basmann) Basmann χ2 statistic
r(p basmann) p-value for Basmann χ2 statistic
r(sargan) Sargan χ2 statistic
r(p sargan) p-value for Sargan χ2 statistic

After LIML estimation, estat overid stores the following in r():

Scalars
r(ar) Anderson–Rubin (1950) χ2 statistic
r(p ar) p-value for Anderson–Rubin (1950) χ2 statistic
r(ar df) χ2 degrees of freedom
r(basmann) Basmann F statistic
r(p basmann) p-value for Basmann F statistic
r(basmann df n) F numerator degrees of freedom
r(basmann df d) F denominator degrees of freedom

After GMM estimation, estat overid stores the following in r():

Scalars
r(HansenJ) Hansen’s J χ2 statistic
r(p HansenJ) p-value for Hansen’s J χ2 statistic
r(J df) χ2 degrees of freedom

After estimation of a just-identified model, or when ar is specified, estat weakrobust stores
the following in r():

Scalars
r(archi2) Anderson–Rubin (1949) χ2 statistic
r(p archi2) p-value for Anderson–Rubin (1949) χ2 statistic
r(archi2 df) χ2 degrees of freedom
r(arF) Anderson–Rubin (1949) F statistic
r(p arF) p-value for Anderson–Rubin (1949) F statistic
r(arF df n) F numerator degrees of freedom
r(arF df d) F denominator degrees of freedom
r(ar ngrid) number of gridpoints used for Anderson–Rubin (1949) confidence interval

Matrices
r(betanull) values of the null hypothesis for endogenous regressors
r(table) matrix containing coefficient with reported confidence interval (omitted if CI is empty)
r(ar ci) matrix containing the bounds of the Anderson–Rubin (1949) confidence interval

After estimation of an overidentified model, or when clr is specified, estat weakrobust stores
the following in r():

Scalars
r(clr) CLR statistic of Moreira (2003)
r(p clr) p-value for CLR statistic
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r(J) J statistic of Finlay and Magnusson (2009) (when model VCE is nonhomoskedastic)
r(rk) rank statistic of Kleibergen and Paap (2006) (when model VCE is nonhomoskedastic)
r(reps) number of simulation replications (when results are simulated)
r(rseed) random seed used (when results are simulated)
r(clr ngrid) number of gridpoints used for CLR confidence interval

Macros
r(rngstate) random-number state used (when results are simulated)

Matrices
r(betanull) values of the null hypothesis for endogenous regressors
r(Sbar) S statistic of Moreira (2003) (when model VCE is homoskedastic)
r(Tbar) T statistic of Moreira (2003) (when model VCE is homoskedastic)
r(table) matrix containing coefficient with reported confidence interval (omitted if CI is empty)
r(clr ci) matrix containing the bounds of the CLR confidence interval

Methods and formulas
Methods and formulas are presented under the following headings:

Notation
estat endogenous
estat firststage
estat overid
estat weakrobust (StataNow)

Notation

Recall from [R] ivregress that the model is

y = Yβ1 + X1β2 + u = Xβ+ u

Y = X1Π1 + X2Π2 + V = ZΠ+ V

where y is an N × 1 vector of the left-hand-side variable, N is the sample size, Y is an N × p
matrix of p endogenous regressors, X1 is an N × k1 matrix of k1 included exogenous regressors,
X2 is an N × k2 matrix of k2 excluded exogenous variables, X = [Y X1], Z = [X1 X2], u is an
N × 1 vector of errors, V is an N × p matrix of errors, β = [β1 β2] is a k = (p+ k1)× 1 vector
of parameters, and Π is a (k1 + k2)× p vector of parameters. If a constant term is included in the
model, then one column of X1 contains all ones.

estat endogenous

Partition Y as Y = [Y1 Y2], where Y1 represents the p1 endogenous regressors whose endogeneity
is being tested and Y2 represents the p2 endogenous regressors whose endogeneity is not being tested.
If the endogeneity of all endogenous regressors is being tested, Y = Y1 and p2 = 0. After GMM
estimation, estat endogenous refits the model treating Y1 as exogenous using the same type of
weight matrix as requested at estimation time with the wmatrix() option; denote the Sargan statistic
from this model by Je and the estimated weight matrix by We. Let Se = W−1

e . estat endogenous
removes from Se the rows and columns corresponding to the variables represented by Y1; denote the
inverse of the resulting matrix by W′

e. Next, estat endogenous fits the model treating both Y1

and Y2 as endogenous, using the weight matrix W′
e; denote the Sargan statistic from this model by

Jc. Then, C = (Je − Jc) ∼ χ2(p1). If one simply used the J statistic from the original model fit
by ivregress in place of Jc, then in finite samples Je − J might be negative. The procedure used
by estat endogenous is guaranteed to yield C ≥ 0; see Hayashi (2000, 220).
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Let ûc denote the residuals from the model treating both Y1 and Y2 as endogenous, and let ûe
denote the residuals from the model treating only Y2 as endogenous. Then, Durbin’s (1954) statistic
is

D =
û′ePZY1

ûe − û′cPZ ûc
û′eûe/N

where PZ = Z(Z′Z)−1Z′ and PZY1
= [Z Y1]([Z Y1]

′[Z Y1])
−1[Z Y1]

′ D ∼ χ2(p1). The
Wu–Hausman (Wu 1974; Hausman 1978) statistic is

WH =
(û′ePZY1

ûe − û′cPZ ûc)/p1
{û′eûe − (û′ePZY1 ûe − û′cPZ ûc)} /(N − k1 − p− p1)

WH ∼ F (p1, N − k1 − p− p1). Baum, Schaffer, and Stillman (2003, 2007) discuss these tests in
more detail.

Next, we describe Wooldridge’s (1995) score test. The nonrobust version of Wooldridge’s test is
identical to Durbin’s test. Suppose a robust covariance matrix was used at estimation time. Let ê
denote the sample residuals obtained by fitting the model via OLS, treating Y as exogenous. We then
regress each variable represented in Y on Z; call the residuals for the jth regression r̂j , j = 1, . . . , p.
Define k̂ij = êir̂ij , i = 1, . . . , N . We then run the regression

1 = θ1k̂1 + · · ·+ θpk̂p + ε

where 1 is an N × 1 vector of ones and ε is a regression error term. N − RSS ∼ χ2(p), where RSS
is the residual sum of squares from the regression just described. If instead an HAC VCE was used
at estimation time, then before running the final regression we prewhiten the k̂j series by using a
VAR(q) model, where q is the number of lags specified with the lags() option.

The regression-based test proceeds as follows. Following Hausman (1978, 1259), we regress Y

on Z and obtain the residuals V̂. Next, we fit the augmented regression

y = Yβ1 + X1β2 + V̂γ+ ε

by OLS regression, where ε is a regression error term. A test of the exogeneity of Y is equivalent
to a test of γ = 0. As Cameron and Trivedi (2005, 276) suggest, this test can be made robust to
heteroskedasticity, autocorrelation, or clustering by using the appropriate robust VCE when testing
γ = 0. When a nonrobust VCE is used, this test is equivalent to the Wu–Hausman test described
earlier. One cannot simply fit this augmented regression via 2SLS to test the endogeneity of a subset
of the endogenous regressors; Davidson and MacKinnon (1993, 229–231) discuss a test of γ = 0 for
the homoskedastic version of the augmented regression fit by 2SLS, but an appropriate robust test is
not apparent.

estat firststage

When the structural equation includes one endogenous regressor, estat firststage fits the
regression

Y = X1π1 + X2π2 + v

via OLS. The R2 and adjusted R2 from that regression are reported in the output, as well as the F
statistic from the Wald test of H0: π2 = 0. To obtain the partial R2 statistic, estat firststage
fits the regression

MX1
y = MX1

X2ξ+ ε
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by OLS, where ε is a regression error term, ξ is a k2 × 1 parameter vector, and MX1 = I −
X1(X

′
1X1)

−1X′1; that is, the partial R2 is the R2 between y and X2 after eliminating the effects
of X1. If the model contains multiple endogenous regressors and the all option is specified, these
statistics are calculated for each endogenous regressor in turn.

To calculate Shea’s partial R2, let y1 denote the endogenous regressor whose statistic is being
calculated and Y0 denote the other endogenous regressors. Define ỹ1 as the residuals obtained from
regressing y1 on Y0 and X1. Let ŷ1 denote the fitted values obtained from regressing y1 on X1

and X2; that is, ŷ1 are the fitted values from the first-stage regression for y1, and define the
columns of Ŷ0 analogously. Finally, let ˜̂y1 denote the residuals from regressing ŷ1 on Ŷ0 and X1.
Shea’s partial R2 is the simple R2 from the regression of ỹ1 on ˜̂y1; denote this as R2

S . Shea’s
adjusted partial R2 is equal to 1− (1−R2

S)(N − 1)/(N − kZ + 1) if a constant term is included
and 1 − (1 − R2

S)(N − 1)/(N − kZ) if there is no constant term included in the model, where
kZ = k1+k2. For one endogenous regressor, one instrument, no exogenous regressors, and a constant
term, R2

S equals the adjusted R2
S .

The Stock and Yogo minimum eigenvalue statistic, first proposed by Cragg and Donald (1993) as
a test for underidentification, is the minimum eigenvalue of the matrix

G =
1

kZ
Σ̂
−1/2
VV Y′M′

X1
X2(X

′
2MX1

X2)
−1X′2MX1

YΣ̂
−1/2
VV

where
Σ̂VV =

1

N − kZ
Y′MZY

MZ = I − Z(Z′Z)−1Z′, and Z = [X1 X2]. Critical values are obtained from the tables in Stock
and Yogo (2005).

estat overid
The Sargan (1958) and Basmann (1960) χ2 statistics are calculated by running the auxiliary

regression
û = Zδ+ e

where û are the sample residuals from the model and e is an error term. Then, Sargan’s statistic is

S = N

(
1− ê′ê

û′û

)
where ê are the residuals from that auxiliary regression. Basmann’s statistic is calculated as

B = S
N − kZ
N − S

Both S and B are distributed χ2(m), where m, the number of overidentifying restrictions, is equal
to kZ − k, where k is the number of endogenous regressors.

Wooldridge’s (1995) score test of overidentifying restrictions is identical to Sargan’s (1958) statistic
under the assumption of i.i.d. and therefore is not recomputed unless a robust VCE was used at estimation
time. If a heteroskedasticity-robust VCE was used, Wooldridge’s test proceeds as follows. Let Ŷ denote
the N × k matrix of fitted values obtained by regressing the endogenous regressors on X1 and X2.
Let Q denote an N ×m matrix of excluded exogenous variables; the test statistic to be calculated is
invariant to whichever m of the k2 excluded exogenous variables is chosen. Define the ith element
of k̂j , i = 1, . . . , N , j = 1, . . . ,m, as

kij = q̂ij ûi
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where q̂ij is the ith element of q̂j , the residuals from regressing the jth column of Q on Ŷ and X1.
Finally, fit the regression

1 = θ1k̂1 + · · ·+ θmk̂m + ε

where 1 is an N × 1 vector of ones and ε is a regression error term, and calculate the residual sum
of squares, RSS. Then, the test statistic is W = N − RSS. W ∼ χ2(m). If an HAC VCE was used at
estimation, then the k̂j are prewhitened using a VAR(p) model, where p is specified using the lags()
option.

The Anderson–Rubin (AR; 1950) test of overidentifying restrictions for use after the LIML estimator
is calculated as AR = N(κ − 1), where κ is the minimal eigenvalue of a certain matrix defined in
Methods and formulas of [R] ivregress. AR ∼ χ2(m). (Some texts define this statistic as N ln(κ)
because ln(x) ≈ (x − 1) for x near 1.) Basmann’s F statistic for use after the LIML estimator is
calculated as BF = (κ− 1)(N − kZ)/m. BF ∼ F (m,N − kZ).

Hansen’s J statistic is simply the sample size times the value of the GMM objective function
defined in (5) of [R] ivregress, evaluated at the estimated parameter values. Under the null hypothesis
that the overidentifying restrictions are valid, J ∼ χ2(m).� �

John Denis Sargan (1924–1996) was born in Yorkshire, UK. He pioneered the theory of
instrumental-variables (IV) estimation in an article published in 1958. In the article, he also
developed overidentification tests, developed significance tests, and discussed possible instru-
ments for applied work. A year later, he wrote an article extending the theory to models containing
autoregressive errors. This extension was one of his many contributions to time-series econometric
analysis. For example, in 1964 he published a paper in which he developed misspecification tests
for dynamic equations, along with an IV estimator for models with nonlinear parameters, and a
model with a long-run equilibrium. His paper laid the foundation for other econometric methods,
such as cointegration analysis, and established what would be known as the London School of
Economics (LSE) approach to econometric modeling. He spent twenty years at this institution,
supervising the doctoral work of many econometricians who themselves made important contri-
butions to econometrics. In addition to Sargan’s many lasting contributions to econometrics, he
also left a lasting impression on his students and colleagues through his generosity.� �

estat weakrobust (StataNow)

In estat weakrobust (StataNow) of Remarks and examples, we reintroduced the model fit by
ivregress, written in matrix form as

y = Yβ1 + X1β2 + u

Y = X1Π1 + X2Π2 + V

The first equation is referred to as the structural equation, and the second equation is referred to as
the first-stage equation.

We then derived the reduced-form equation. Below, we write the model in the form of the
reduced-form equation and the first-stage equations

y = X1δ1 + X2δ2 + ε

Y = X1Π1 + X2Π2 + V
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where δ1 ≡ Π1β1 + β2 and δ2 ≡ Π2β1. The reduced-form coefficients δ1 and δ2 are k1 × 1 and
k2× 1, respectively. Without loss of generality, we can rewrite the model to omit included exogenous
regressors X1 by considering y, Y, X2, ε, and V to have been replaced by their partialled-out
equivalents:

y = X2δ2 + ε

Y = X2Π2 + V

Our null hypothesis β1 = r1 implies that δ2 −Π2r1 = 0.

Homoskedastic errors

Let Ω̂ = 1/N
[
ε̂′ε̂ ε̂′V̂
V̂′ε̂ V̂′V̂

]
be the estimated (p+ 1)× (p+ 1) covariance matrix of (ε′,V′)′.

When the model is assumed to have homoskedastic errors, we can proceed by computing the statistics

S = (X′2X2)
−1/2X′2(y −Yr1)(b

′
0Ω̂b0)

−1/2

and
T = (X′2X2)

−1/2X′2[y,Y
′]′Ω̂
−1

A0(A
′
0Ω̂
−1A0)

−1/2

where b0 = [1,−r1] and A0 = [r1, Ip]
′.

The Anderson–Rubin (1949) statistic is computed as AR = S
′
S and follows a χ2(k2) distribution.

When the model has been fit with the small option in ivregress, an F version of the statistic is
returned, which is distributedF (k2, N−k1−k2). ThisF statistic is computed usingN/(N−k1−k2)Ω̂
in place of Ω̂.

The CLR statistic is computed as CLR = S
′
S − λmin

, where λ
min

is the minimum eigenvalue of
the matrix (S, T )′(S, T ). When the model is fit with the small option in ivregress, the statistic
is computed using N/(N − k1 − k2)Ω̂. When the model is just identified, CLR ∼ χ2(k2). When
the model is overidentified, CLR has a nonstandard distribution. The numerical method of Andrews,
Moreira, and Stock (2007) is used to obtain p-values in the single-endogenous regressor case. In the
multiple-endogenous regressor case, p-values are obtained by simulation conditional on T , as outlined
in Moreira (2003).

Nonhomoskedastic errors

When the model is fit with a nonhomoskedastic VCE, let

Σ̂ =

[
Σ̂δ Σ̂δΠ

Σ̂Πδ Σ̂Π

]
be the k2(p + 1) × k2(p + 1) estimated covariance matrix of {δ′2,Vec(Π2)

′}′, where Vec(·) is the
column-major vectorization operator.

We compute the Anderson–Rubin statistic as

AR(r1) = (y −Yr1)
′X2(X

′
2X2)

−1Ψ̂(r1)
−1(X′2X2)

−1X′2(y −Yr1)

where Ψ̂(r1) = (b0 ⊗ Ik)
′Σ̂(b0 ⊗ Ik).
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As in the homoskedastic case, AR takes on a χ2(k2) distribution under the null. When the model
is fit with the small option, the statistic is computed using a small-sample adjustment, and an F
version of the statistic is returned.

To compute the CLR test statistic, let J(r1) be defined as in Finlay and Magnusson (2009)
(or, equivalently, as in Kleibergen [2007]), and let rk(r1) be the rank statistic of Kleibergen and
Paap (2006) (the forms of these statistics are omitted here for brevity). The test statistic is given by

CLR(r1) =
1

2

[
AR(r1)− rk(r1) +

√
{AR(r1) + rk(r1)}2 − 4J(r1)rk(r1)

]
In the just-identified case, CLR is equal to AR and has a χ2(k2) distribution. Otherwise, CLR has a
nonstandard distribution, and p-values are obtained by simulation, as outlined in Kleibergen (2007).
When the model is fit with the small option, the statistic is computed using a small-sample adjustment.

Confidence intervals

Confidence intervals are obtained by inverting the relevant tests. When the model is fit with a
homoskedastic VCE, or when it is just identified, the Anderson–Rubin test can be inverted analytically,
so the bounds of the resulting interval (or union of intervals) are computed as a closed form
(see Mikusheva [2010] for details). When the model VCE is nonhomoskedastic and the model is
overidentified, the Anderson–Rubin confidence interval is obtained by a gridding procedure.

The CLR test is equivalent to the Anderson–Rubin test in the just-identified case, so its confidence
intervals can be computed in the same way. In the overidentified case when errors are homoskedas-
tic, the CLR test is inverted numerically using the method of Mikusheva (2010). When errors are
nonhomoskedastic, a gridding procedure is used to obtain a confidence interval.
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