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Description
glm fits generalized linear models. It can fit models by using either IRLS (maximum quasilikelihood)

or Newton–Raphson (maximum likelihood) optimization, which is the default.

See [U] 27 Overview of Stata estimation commands for a description of all of Stata’s estimation
commands, several of which fit models that can also be fit using glm.

Quick start
Model of y as a function of x when y is a proportion

glm y x, family(binomial)

Logit model of y events occurring in 15 trials as a function of x
glm y x, family(binomial 15) link(logit)

Probit model of y events as a function of x using grouped data with group sizes n

glm y x, family(binomial n) link(probit)

Model of discrete y with user-defined family myfamily and link mylink

glm y x, family(myfamily) link(mylink)

Bootstrap standard errors in a model of y as a function of x with a gamma family and log link
glm y x, family(gamma) link(log) vce(bootstrap)

Menu
Statistics > Generalized linear models > Generalized linear models (GLM)
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Syntax
glm depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

family(familyname) distribution of depvar; default is family(gaussian)

link(linkname) link function; default is canonical link for family() specified

Model 2

noconstant suppress constant term
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
asis retain perfect predictor variables
mu(varname) use varname as the initial estimate for the mean of depvar
init(varname) synonym for mu(varname)

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, eim, opg,
bootstrap, jackknife, hac kernel, jackknife1, or unbiased

vfactor(#) multiply variance matrix by scalar #
disp(#) quasilikelihood multiplier
scale(x2 | dev | #) set the scale parameter

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated coefficients
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

ml use maximum likelihood optimization; the default
irls use iterated, reweighted least-squares optimization of the deviance
maximize options control the maximization process; seldom used
fisher(#) use the Fisher scoring Hessian or expected information matrix (EIM)
search search for good starting values

noheader suppress header table from above coefficient table
notable suppress coefficient table
nodisplay suppress the output; iteration log is still displayed
collinear keep collinear variables
coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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familyname Description

gaussian Gaussian (normal)
igaussian inverse Gaussian
binomial

[
varnameN | #N

]
Bernoulli/binomial

poisson Poisson
nbinomial

[
#k | ml

]
negative binomial

gamma gamma

linkname Description

identity identity
log log
logit logit
probit probit
cloglog cloglog
power # power
opower # odds power
nbinomial negative binomial
loglog log–log
logc log-complement

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby,

stepwise, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: glm
and [FMM] fmm: glm.

vce(bootstrap), vce(jackknife), and vce(jackknife1) are not allowed with the mi estimate prefix; see
[MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), vfactor(), disp(), scale(), irls, fisher(), noheader, notable, nodisplay, and weights are not

allowed with the svy prefix; see [SVY] svy.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, nodisplay, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

family( familyname) specifies the distribution of depvar; family(gaussian) is the default.

link(linkname) specifies the link function; the default is the canonical link for the family()
specified (except for family(nbinomial)).

� � �
Model 2 �

noconstant, exposure(varname), offset(varname), constraints(constraints); see [R] Esti-
mation options. constraints(constraints) is not allowed with irls.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesglm.pdf#bayesbayesglm
https://www.stata.com/manuals/fmmfmmglm.pdf#fmmfmmglm
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit. This option is allowed only with
option family(binomial) with a denominator of 1.

mu(varname) specifies varname as the initial estimate for the mean of depvar. This option can be
useful with models that experience convergence difficulties, such as family(binomial) models
with power or odds-power links. init(varname) is a synonym.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

In addition to the standard vcetypes, glm allows the following alternatives:

vce(eim) specifies that the EIM estimate of variance be used.

vce(jackknife1) specifies that the one-step jackknife estimate of variance be used.

vce(hac kernel
[
#
]
) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC)

variance estimate be used. HAC refers to the general form for combining weighted matrices
to form the variance estimate. There are three kernels built into glm. kernel is a user-written
program or one of

nwest | gallant | anderson
# specifies the number of lags. If # is not specified, N − 2 is assumed. If you wish to specify
vce(hac . . . ), you must tsset your data before calling glm.

vce(unbiased) specifies that the unbiased sandwich estimate of variance be used.

vfactor(#) specifies a scalar by which to multiply the resulting variance matrix. This option allows
you to match output with other packages, which may apply degrees of freedom or other small-sample
corrections to estimates of variance.

disp(#) multiplies the variance of depvar by # and divides the deviance by #. The resulting
distributions are members of the quasilikelihood family. This option is allowed only with option
irls.

scale(x2 | dev | #) overrides the default scale parameter. This option is allowed only with Hessian
(information matrix) variance estimates.

By default, scale(1) is assumed for the discrete distributions (binomial, Poisson, and negative
binomial), and scale(x2) is assumed for the continuous distributions (Gaussian, gamma, and
inverse Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson χ2 (or generalized χ2) statistic
divided by the residual degrees of freedom, which is recommended by McCullagh and Nelder (1989)
as a good general choice for continuous distributions.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.
This option provides an alternative to scale(x2) for continuous distributions and overdispersed
or underdispersed discrete distributions. This option is allowed only with option irls.

scale(#) sets the scale parameter to #. For example, using scale(1) in family(gamma)
models results in exponential-errors regression. Additional use of link(log) rather than the
default link(power -1) for family(gamma) essentially reproduces Stata’s streg, dist(exp)
nohr command (see [ST] streg) if all the observations are uncensored.

https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststreg.pdf#ststreg
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� � �
Reporting �

level(#); see [R] Estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals. For family(binomial) link(logit) (that is, logistic regression), exponentiation
results are odds ratios; for family(nbinomial) link(log) (that is, negative binomial regression)
and for family(poisson) link(log) (that is, Poisson regression), exponentiated coefficients
are incidence-rate ratios.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

ml requests that optimization be carried out using Stata’s ml commands and is the default.

irls requests iterated, reweighted least-squares (IRLS) optimization of the deviance instead of Newton–
Raphson optimization of the log likelihood. If the irls option is not specified, the optimization
is carried out using Stata’s ml commands, in which case all options of ml maximize are also
available.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are
seldom used.

Setting the optimization method to technique(bhhh) resets the default vcetype to vce(opg).

If option irls is specified, only maximize options iterate(), nolog, trace, and ltolerance()
are allowed. With irls specified, the convergence criterion is satisfied when the absolute change
in deviance from one iteration to the next is less than or equal to ltolerance(), where
ltolerance(1e-6) is the default.

fisher(#) specifies the number of Newton–Raphson steps that should use the Fisher scoring Hessian
or EIM before switching to the observed information matrix (OIM). This option is useful only for
Newton–Raphson optimization (and not when using irls).

search specifies that the command search for good starting values. This option is useful only for
Newton–Raphson optimization (and not when using irls).

The following options are available with glm but are not shown in the dialog box:

noheader suppresses the header information from the output. The coefficient table is still displayed.

notable suppresses the table of coefficients from the output. The header information is still displayed.

nodisplay suppresses the output. The iteration log is still displayed.

collinear, coeflegend; see [R] Estimation options. collinear is not allowed with irls.

Remarks and examples stata.com

Remarks are presented under the following headings:

General use
Variance estimators
User-defined functions

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
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General use

glm fits generalized linear models of y with covariates x:

g
{
E(y)

}
= xβ, y ∼ F

g( ) is called the link function, and F is the distributional family. Substituting various definitions
for g( ) and F results in a surprising array of models. For instance, if y is distributed as Gaussian
(normal) and g( ) is the identity function, we have

E(y) = xβ, y ∼ Normal

or linear regression. If g( ) is the logit function and y is distributed as Bernoulli, we have

logit
{
E(y)

}
= xβ, y ∼ Bernoulli

or logistic regression. If g( ) is the natural log function and y is distributed as Poisson, we have

ln
{
E(y)

}
= xβ, y ∼ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

Although glm can be used to perform linear regression (and, in fact, does so by default), this
regression should be viewed as an instructional feature; regress produces such estimates more
quickly, and many postestimation commands are available to explore the adequacy of the fit; see
[R] regress and [R] regress postestimation.

In any case, you specify the link function by using the link() option and specify the distributional
family by using family(). The available link functions are

Link function glm option

identity link(identity)

log link(log)

logit link(logit)

probit link(probit)

complementary log–log link(cloglog)

odds power link(opower #)

power link(power #)

negative binomial link(nbinomial)

log–log link(loglog)

log-complement link(logc)

Define µ = E(y) and η = g(µ), meaning that g(·) maps E(y) to η = xβ + offset.

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
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Link functions are defined as follows:

identity is defined as η = g(µ) = µ.

log is defined as η = ln(µ).

logit is defined as η = ln
{
µ/(1− µ)

}
, the natural log of the odds.

probit is defined as η = Φ−1(µ), where Φ−1( ) is the inverse Gaussian cumulative.

cloglog is defined as η = ln
{
− ln(1− µ)

}
.

opower is defined as η =
[{
µ/(1 − µ)

}n − 1
]
/n, the power of the odds. The function is

generalized so that link(opower 0) is equivalent to link(logit), the natural log of the odds.

power is defined as η = µn. Specifying link(power 1) is equivalent to specifying
link(identity). The power function is generalized so that µ0 ≡ ln(µ). Thus, link(power
0) is equivalent to link(log). Negative powers are, of course, allowed.

nbinomial is defined as η = ln
{
µ/(µ+ k)

}
, where k = 1 if family(nbinomial) is specified,

k = #k if family(nbinomial #k) is specified, and k is estimated via maximum likelihood if
family(nbinomial ml) is specified.

loglog is defined as η = −ln{−ln(µ)}.
logc is defined as η = ln(1− µ).

The available distributional families are

Family glm option

Gaussian (normal) family(gaussian)

inverse Gaussian family(igaussian)

Bernoulli/binomial family(binomial)

Poisson family(poisson)

negative binomial family(nbinomial)

gamma family(gamma)

family(normal) is a synonym for family(gaussian).

The binomial distribution can be specified as 1) family(binomial), 2) family(binomial #N),
or 3) family(binomial varnameN). In case 2, #N is the value of the binomial denominator N , the
number of trials. Specifying family(binomial 1) is the same as specifying family(binomial).
In case 3, varnameN is the variable containing the binomial denominator, allowing the number of
trials to vary across observations.

The negative binomial distribution can be specified as 1) family(nbinomial), 2) fam-
ily(nbinomial #k), or 3) family(nbinomial ml). Omitting #k is equivalent to specifying
family(nbinomial 1). In case 3, the value of #k is estimated via maximum likelihood. The value
#k enters the variance and deviance functions. Typical values range between 0.01 and 2; see the
technical note below.

You do not have to specify both family() and link(); the default link() is the canonical link
for the specified family() (except for nbinomial):
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Family Default link

family(gaussian) link(identity)

family(igaussian) link(power -2)

family(binomial) link(logit)

family(poisson) link(log)

family(nbinomial) link(log)

family(gamma) link(power -1)

If you specify both family() and link(), not all combinations make sense. You may choose from
the following combinations:

identity log logit probit cloglog power opower nbinomial loglog logc

Gaussian x x x
inverse Gaussian x x x
binomial x x x x x x x x x
Poisson x x x
negative binomial x x x x
gamma x x x

Technical note

Some family() and link() combinations result in models already fit by Stata. These are

family() link() Options Equivalent Stata command

gaussian identity nothing | irls | irls vce(oim) regress

gaussian identity t(var) vce(hac nwest #) newey, t(var) lag(#) (see note 1)
vfactor(#v)

binomial cloglog nothing | irls vce(oim) cloglog (see note 2)

binomial probit nothing | irls vce(oim) probit (see note 2)

binomial logit nothing | irls | irls vce(oim) logit or logistic (see note 3)

poisson log nothing | irls | irls vce(oim) poisson (see note 3)

nbinomial log nothing | irls vce(oim) nbreg (see note 4)
gamma log scale(1) streg, dist(exp) nohr (see note 5)

Notes:

1. The variance factor #v should be set to n/(n − k), where n is the number of observations and
k the number of regressors. If the number of regressors is not specified, the estimated standard
errors will, as a result, differ by this factor.

2. Because the link is not the canonical link for the binomial family, you must specify the vce(oim)
option if using irls to get equivalent standard errors. If irls is used without vce(oim),
the regression coefficients will be the same but the standard errors will be only asymptotically
equivalent. If no options are specified (nothing), glm will optimize using Newton–Raphson, making
it equivalent to the other Stata command.

See [R] cloglog and [R] probit for more details about these commands.

3. Because the canonical link is being used, the standard errors will be equivalent whether the EIM
or the OIM estimator of variance is used.

https://www.stata.com/manuals/rcloglog.pdf#rcloglog
https://www.stata.com/manuals/rprobit.pdf#rprobit
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4. Family negative binomial, log-link models—also known as negative binomial regression
models—are used for data with an overdispersed Poisson distribution. Although glm can be
used to fit such models, using Stata’s maximum likelihood nbreg command is probably better. In
the GLM approach, you specify family(nbinomial #k) and then search for a #k that results in
the deviance-based dispersion being 1. You can also specify family(nbinomial ml) to estimate
#k via maximum likelihood, which will report the same value returned from nbreg. However,
nbreg also reports a confidence interval for it; see [R] nbreg and Rogers (1993). Of course, glm
allows links other than log, and for those links, including the canonical nbinomial link, you will
need to use glm.

5. glm can be used to estimate parameters from exponential regressions, but this method requires
specifying scale(1). However, censoring is not available. Censored exponential regression may
be modeled using glm with family(poisson). The log of the original response is entered into
a Poisson model as an offset, whereas the new response is the censor variable. The result of such
modeling is identical to the log relative hazard parameterization of streg, dist(exp) nohr. See
[ST] streg for details about the streg command.

In general, where there is overlap between a capability of glm and that of some other Stata
command, we recommend using the other Stata command. Our recommendation is not because of
some inferiority of the GLM approach. Rather, those other commands, by being specialized, provide
options and ancillary commands that are missing in the broader glm framework. Nevertheless, glm
does produce the same answers where it should.

Special note. When equivalence is expected, for some datasets, you may still see very slight differences
in the results, most often only in the later digits of the standard errors. When you compare glm
output to an equivalent Stata command, these tiny discrepancies arise for many reasons:

a. glm uses a general methodology for starting values, whereas the equivalent Stata command may
be more specialized in its treatment of starting values.

b. When using a canonical link, glm, irls should be equivalent to the maximum likelihood method
of the equivalent Stata command, yet the convergence criterion is different (one is for deviance,
the other for log likelihood). These discrepancies are easily resolved by adjusting one convergence
criterion to correspond to the other.

c. When both glm and the equivalent Stata command use Newton–Raphson, small differences may
still occur if the Stata command has a different default convergence criterion from that of glm.
Adjusting the convergence criterion will resolve the difference. See [R] ml and [R] Maximize for
more details.

Example 1

In example 1 of [R] logistic, we fit a model based on data from a study of risk factors associated
with low birthweight (Hosmer, Lemeshow, and Sturdivant 2013, 24). We can replicate the estimation
by using glm:

https://www.stata.com/manuals/rnbreg.pdf#rnbreg
https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rlogistic.pdf#rlogisticRemarksandexamplesex1_logistic
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
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. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)

. glm low age lwt i.race smoke ptl ht ui, family(binomial) link(logit)

Iteration 0: Log likelihood = -101.0213
Iteration 1: Log likelihood = -100.72519
Iteration 2: Log likelihood = -100.724
Iteration 3: Log likelihood = -100.724

Generalized linear models Number of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Coefficient std. err. z P>|z| [95% conf. interval]

age -.0271003 .0364504 -0.74 0.457 -.0985418 .0443412
lwt -.0151508 .0069259 -2.19 0.029 -.0287253 -.0015763

race
Black 1.262647 .5264101 2.40 0.016 .2309024 2.294392
Other .8620792 .4391532 1.96 0.050 .0013548 1.722804

smoke .9233448 .4008266 2.30 0.021 .137739 1.708951
ptl .5418366 .346249 1.56 0.118 -.136799 1.220472
ht 1.832518 .6916292 2.65 0.008 .4769494 3.188086
ui .7585135 .4593768 1.65 0.099 -.1418484 1.658875

_cons .4612239 1.20459 0.38 0.702 -1.899729 2.822176

glm, by default, presents coefficient estimates, whereas logistic presents the exponentiated
coefficients—the odds ratios. glm’s eform option reports exponentiated coefficients, and glm, like
Stata’s other estimation commands, replays results.
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. glm, eform

Generalized linear models Number of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Odds ratio std. err. z P>|z| [95% conf. interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
Black 3.534767 1.860737 2.40 0.016 1.259736 9.918406
Other 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

Note: _cons estimates baseline odds.

These results are the same as those reported in example 1 of [R] logistic.

Included in the output header are values for the Akaike (1973) information criterion (AIC) and the
Bayesian information criterion (BIC) (Raftery 1995). Both are measures of model fit adjusted for the
number of parameters that can be compared across models. In both cases, a smaller value generally
indicates a better model fit. AIC is based on the log likelihood and thus is available only when
Newton–Raphson optimization is used. BIC is based on the deviance and thus is always available.

Technical note
The values for AIC and BIC reported in the output after glm are different from those reported by

estat ic:

. estat ic

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 189 . -100.724 9 219.448 248.6237

Note: BIC uses N = number of observations. See [R] IC note.

There are various definitions of these information criteria (IC) in the literature; glm and estat ic
use different definitions. glm bases its computation of the BIC on deviance, whereas estat ic uses
the likelihood. Both glm and estat ic use the likelihood to compute the AIC; however, the AIC from
estat ic is equal to N , the number of observations, times the AIC from glm. Refer to Methods and
formulas in this entry and [R] estat ic for the references and formulas used by glm and estat ic,
respectively, to compute AIC and BIC. Inferences based on comparison of IC values reported by glm

https://www.stata.com/manuals/rlogistic.pdf#rlogisticRemarksandexamplesex1_logistic
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/restatic.pdf#restatic
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for different GLM models will be equivalent to those based on comparison of IC values reported by
estat ic after glm.

Example 2

We use data from an early insecticide experiment, given in Pregibon (1980). The variables are
ldose, the log dose of insecticide; n, the number of flour beetles subjected to each dose; and r, the
number killed.

. use https://www.stata-press.com/data/r18/ldose

. list, sep(4)

ldose n r

1. 1.6907 59 6
2. 1.7242 60 13
3. 1.7552 62 18
4. 1.7842 56 28

5. 1.8113 63 52
6. 1.8369 59 53
7. 1.861 62 61
8. 1.8839 60 60

The aim of the analysis is to estimate a dose–response relationship between p, the proportion
killed, and X , the log dose.

As a first attempt, we will formulate the model as a linear logistic regression of p on ldose; that
is, we will take the logit of p and represent the dose–response curve as a straight line in X:

ln
{
p/(1− p)

}
= β0 + β1X

Because the data are grouped, we cannot use Stata’s logistic command to fit the model. Instead,
we will fit the model by using glm:

. glm r ldose, family(binomial n) link(logit)

Iteration 0: Log likelihood = -18.824848
Iteration 1: Log likelihood = -18.715271
Iteration 2: Log likelihood = -18.715123
Iteration 3: Log likelihood = -18.715123

Generalized linear models Number of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 11.23220702 (1/df) Deviance = 1.872035
Pearson = 10.0267936 (1/df) Pearson = 1.671132

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/(n-u)) [Logit]

AIC = 5.178781
Log likelihood = -18.71512262 BIC = -1.244442

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 34.27034 2.912141 11.77 0.000 28.56265 39.97803
_cons -60.71747 5.180713 -11.72 0.000 -70.87149 -50.56346
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We specified family(binomial n), meaning that variable n contains the denominator.

An alternative model, which gives asymmetric sigmoid curves for p, involves the complementary
log–log, or cloglog, function:

ln
{
− ln(1− p)

}
= β0 + β1X

We fit this model by using glm:

. glm r ldose, family(binomial n) link(cloglog)

Iteration 0: Log likelihood = -14.883594
Iteration 1: Log likelihood = -14.822264
Iteration 2: Log likelihood = -14.822228
Iteration 3: Log likelihood = -14.822228

Generalized linear models Number of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 3.446418004 (1/df) Deviance = .574403
Pearson = 3.294675153 (1/df) Pearson = .5491125

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 4.205557
Log likelihood = -14.82222811 BIC = -9.030231

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557
_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

The cloglog model is preferred; the deviance for the logistic model, 11.23, is much higher than the
deviance for the cloglog model, 3.45. This change also is evident by comparing log likelihoods, or
equivalently, AIC values.

This example also shows the advantage of the glm command—we can vary assumptions easily.
Note the minor difference in what we typed to obtain the logistic and cloglog models:

. glm r ldose, family(binomial n) link(logit)

. glm r ldose, family(binomial n) link(cloglog)

If we were performing this work for ourselves, we would have typed the commands in a more
abbreviated form:

. glm r ldose, f(b n) l(l)

. glm r ldose, f(b n) l(cl)

Technical note
Factor variables may be used with glm. Say that, in the example above, we had ldose, the

log dose of insecticide; n, the number of flour beetles subjected to each dose; and r, the number
killed—all as before—except that now we have results for three different kinds of beetles. Our
hypothetical data include beetle, which contains the values 1 (“Destructive flour”), 2 (“Red flour”),
and 3 (“Mealworm”).
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. use https://www.stata-press.com/data/r18/beetle

. list, sep(0)

beetle ldose n r

1. Destructive flour 1.6907 59 6
2. Destructive flour 1.7242 60 13
3. Destructive flour 1.7552 62 18
4. Destructive flour 1.7842 56 28
5. Destructive flour 1.8113 63 52

(output omitted )
23. Mealworm 1.861 64 23
24. Mealworm 1.8839 58 22

Let’s assume that, at first, we wish merely to add a shift factor for the type of beetle. We could type

. glm r i.beetle ldose, family(bin n) link(cloglog)

Iteration 0: Log likelihood = -79.012269
Iteration 1: Log likelihood = -76.94951
Iteration 2: Log likelihood = -76.945645
Iteration 3: Log likelihood = -76.945645

Generalized linear models Number of obs = 24
Optimization : ML Residual df = 20

Scale parameter = 1
Deviance = 73.76505595 (1/df) Deviance = 3.688253
Pearson = 71.8901173 (1/df) Pearson = 3.594506

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 6.74547
Log likelihood = -76.94564525 BIC = 10.20398

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.0910396 .1076132 -0.85 0.398 -.3019576 .1198783
Mealworm -1.836058 .1307125 -14.05 0.000 -2.09225 -1.579867

ldose 19.41558 .9954265 19.50 0.000 17.46458 21.36658
_cons -34.84602 1.79333 -19.43 0.000 -38.36089 -31.33116
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We find strong evidence that the insecticide works differently on the mealworm. We now check
whether the curve is merely shifted or also differently sloped:

. glm r beetle##c.ldose, family(bin n) link(cloglog)

Iteration 0: Log likelihood = -67.270188
Iteration 1: Log likelihood = -65.149316
Iteration 2: Log likelihood = -65.147978
Iteration 3: Log likelihood = -65.147978

Generalized linear models Number of obs = 24
Optimization : ML Residual df = 18

Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422567 (1/df) Pearson = 2.738013

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 5.928998
Log likelihood = -65.14797776 BIC = -7.035248

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
Mealworm 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
Red flour .3838708 2.478477 0.15 0.877 -4.473855 5.241596
Mealworm -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

We find that the (complementary log–log) dose–response curve for the mealworm has roughly half
the slope of that for the destructive flour beetle.

See [U] 26 Working with categorical data and factor variables; what is said there concerning
linear regression is applicable to any GLM model.

https://www.stata.com/manuals/u26.pdf#u26Workingwithcategoricaldataandfactorvariables
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Variance estimators
glm offers many variance options and gives different types of standard errors when used in various

combinations. We highlight some of them here, but for a full explanation, see Hardin and Hilbe (2018).

Example 3

Continuing with our flour beetle data, we rerun the most recently displayed model, this time
requesting estimation via IRLS.

. use https://www.stata-press.com/data/r18/beetle

. glm r beetle##c.ldose, f(bin n) l(cloglog) ltol(1e-13) irls

Iteration 1: Deviance = 54.41414
Iteration 2: Deviance = 50.19424
Iteration 3: Deviance = 50.16973

(output omitted )
Generalized linear models Number of obs = 24
Optimization : MQL Fisher scoring Residual df = 18

(IRLS EIM) Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422528 (1/df) Pearson = 2.738013

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

BIC = -7.035248

EIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.586649 -0.17 0.862 -9.788997 8.190337
Mealworm 17.78741 4.624834 3.85 0.000 8.7229 26.85192

ldose 22.04118 1.799356 12.25 0.000 18.5145 25.56785

beetle#c.ldose
Red flour .3838708 2.544068 0.15 0.880 -4.602411 5.370152
Mealworm -10.726 2.548176 -4.21 0.000 -15.72033 -5.731665

_cons -39.57232 3.240274 -12.21 0.000 -45.92314 -33.2215

Note our use of the ltol() option, which, although unrelated to our discussion on variance estimation,
was used so that the regression coefficients would match those of the previous Newton–Raphson (NR)
fit.

Because IRLS uses the EIM for optimization, the variance estimate is also based on EIM. If we want
optimization via IRLS but the variance estimate based on OIM, we specify glm, irls vce(oim):
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. glm r beetle##c.ldose, f(b n) l(cl) ltol(1e-15) irls vce(oim) noheader nolog

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
Mealworm 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
Red flour .3838708 2.478477 0.15 0.877 -4.473855 5.241596
Mealworm -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

This approach is identical to NR except for the convergence path. Because the cloglog link is not
the canonical link for the binomial family, EIM and OIM produce different results. Both estimators,
however, are asymptotically equivalent.

Going back to NR, we can also specify vce(robust) to get the Huber/White/sandwich estimator
of variance:

. glm r beetle##c.ldose, f(b n) l(cl) vce(robust) noheader nolog

Robust
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 5.733049 -0.14 0.889 -12.0359 10.43724
Mealworm 17.78741 5.158477 3.45 0.001 7.676977 27.89784

ldose 22.04118 .8998551 24.49 0.000 20.27749 23.80486

beetle#c.ldose
Red flour .3838708 3.174427 0.12 0.904 -5.837892 6.605633
Mealworm -10.726 2.800606 -3.83 0.000 -16.21508 -5.236912

_cons -39.57232 1.621306 -24.41 0.000 -42.75003 -36.39462

The sandwich estimator gets its name from the form of the calculation—it is the multiplication
of three matrices, with the outer two matrices (the “bread”) set to the OIM variance matrix. When
irls is used along with vce(robust), the EIM variance matrix is instead used as the bread. Using
a result from McCullagh and Nelder (1989), Newson (1999) points out that the EIM and OIM variance
matrices are equivalent under the canonical link. Thus if irls is specified with the canonical link,
the resulting variance is labeled “Robust”. When the noncanonical link for the family is used, which
is the case in the example below, the EIM and OIM variance matrices differ, so the resulting variance
is labeled “Semirobust”.
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. glm r beetle##c.ldose, f(b n) l(cl) irls ltol(1e-15) vce(robust) noheader
> nolog

Semirobust
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 6.288963 -0.13 0.899 -13.12547 11.52681
Mealworm 17.78741 5.255307 3.38 0.001 7.487194 28.08762

ldose 22.04118 .9061566 24.32 0.000 20.26514 23.81721

beetle#c.ldose
Red flour .3838708 3.489723 0.11 0.912 -6.455861 7.223603
Mealworm -10.726 2.855897 -3.76 0.000 -16.32345 -5.128542

_cons -39.57232 1.632544 -24.24 0.000 -42.77205 -36.3726

The outer product of the gradient (OPG) estimate of variance is one that avoids the calculation of
second derivatives. It is equivalent to the “middle” part of the sandwich estimate of variance and can
be specified by using glm, vce(opg), regardless of whether NR or IRLS optimization is used.

. glm r beetle##c.ldose, f(b n) l(cl) vce(opg) noheader nolog

OPG
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 6.664045 -0.12 0.905 -13.86062 12.26196
Mealworm 17.78741 6.838505 2.60 0.009 4.384183 31.19063

ldose 22.04118 3.572983 6.17 0.000 15.03826 29.0441

beetle#c.ldose
Red flour .3838708 3.700192 0.10 0.917 -6.868372 7.636114
Mealworm -10.726 3.796448 -2.83 0.005 -18.1669 -3.285097

_cons -39.57232 6.433101 -6.15 0.000 -52.18097 -26.96368

The OPG estimate of variance is a component of the BHHH (Berndt et al. 1974) optimization
technique. This method of optimization is also available with glm with the technique() option;
however, the technique() option is not allowed with the irls option.

Example 4

The Newey–West (1987) estimator of variance is a sandwich estimator with the “middle” of the
sandwich modified to account for possible autocorrelation between the observations. These estimators
are a generalization of those given by the Stata command newey for linear regression. See [TS] newey
for more details.

For example, consider the dataset given in [TS] newey, which has time-series measurements on
usr and idle. We want to perform a linear regression with Newey–West standard errors.

https://www.stata.com/manuals/tsnewey.pdf#tsnewey
https://www.stata.com/manuals/tsnewey.pdf#tsnewey
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. use https://www.stata-press.com/data/r18/idle2

. list usr idle time

usr idle time

1. 0 100 1
2. 0 100 2
3. 0 97 3
4. 1 98 4
5. 2 94 5

(output omitted )
29. 1 98 29
30. 1 98 30

Examining Methods and formulas of [TS] newey, we see that the variance estimate is multiplied
by a correction factor of n/(n− k), where k is the number of regressors. glm, vce(hac . . . ) does
not make this correction, so to get the same standard errors, we must use the vfactor() option
within glm to make the correction manually.

. display 30/28
1.0714286

. tsset time

Time variable: time, 1 to 30
Delta: 1 unit

. glm usr idle, vce(hac nwest 3) vfactor(1.0714286)

Iteration 0: Log likelihood = -71.743396

Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = 7.493297
Deviance = 209.8123165 (1/df) Deviance = 7.493297
Pearson = 209.8123165 (1/df) Pearson = 7.493297

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

HAC kernel (lags): Newey--West (3)
AIC = 4.916226

Log likelihood = -71.74339627 BIC = 114.5788

HAC
usr Coefficient std. err. z P>|z| [95% conf. interval]

idle -.2281501 .0690928 -3.30 0.001 -.3635694 -.0927307
_cons 23.13483 6.327033 3.66 0.000 10.73407 35.53558

The glm command above reproduces the results given in [TS] newey. We may now generalize this
output to models other than simple linear regression and to different kernel weights.

https://www.stata.com/manuals/tsnewey.pdf#tsneweyMethodsandformulas
https://www.stata.com/manuals/tsnewey.pdf#tsnewey
https://www.stata.com/manuals/tsnewey.pdf#tsnewey
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. glm usr idle, fam(gamma) link(log) vce(hac gallant 3)

Iteration 0: Log likelihood = -61.76593
Iteration 1: Log likelihood = -60.963233
Iteration 2: Log likelihood = -60.95097
Iteration 3: Log likelihood = -60.950965

Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

HAC kernel (lags): Gallant (3)
AIC = 4.196731

Log likelihood = -60.95096484 BIC = -85.32502

HAC
usr Coefficient std. err. z P>|z| [95% conf. interval]

idle -.0796609 .0184647 -4.31 0.000 -.115851 -.0434708
_cons 7.771011 1.510198 5.15 0.000 4.811078 10.73094

glm also offers variance estimators based on the bootstrap (resampling your data with replacement)
and the jackknife (refitting the model with each observation left out in succession). Also included is
the one-step jackknife estimate, which, instead of performing full reestimation when each observation
is omitted, calculates a one-step NR estimate, with the full data regression coefficients as starting
values.

. set seed 1

. glm usr idle, fam(gamma) link(log) vce(bootstrap, reps(100) nodots)

Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

AIC = 4.196731
Log likelihood = -60.95096484 BIC = -85.32502

Observed Bootstrap Normal-based
usr coefficient std. err. z P>|z| [95% conf. interval]

idle -.0796609 .016657 -4.78 0.000 -.1123081 -.0470137
_cons 7.771011 1.378037 5.64 0.000 5.070108 10.47192

See Hardin and Hilbe (2018) for a full discussion of the variance options that go with glm and,
in particular, of how the different variance estimators are modified when vce(cluster clustvar) is
specified. Finally, not all variance options are supported with all types of weights. See help glm for
a current table of the variance options that are supported with the different weights.
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User-defined functions
glm may be called with a community-contributed link function, variance (family) function, Newey–

West kernel-weight function, or any combination of the three.

Syntax of link functions
program progname

version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return
if ‘todo’ == -1 {

/* Set global macros for output */
global SGLM_lt "title for link function"
global SGLM_lf "subtitle showing link definition"
exit

}
if ‘todo’ == 0 {

/* set η=g(µ) */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set µ=g−1(η) */
/* Intermediate calculations go here */
generate double ‘mu’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return = ∂µ/∂η */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return = ∂2µ/∂η2 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error "Unknown call to glm link function"
exit 198

end
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Syntax of variance functions

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return
if ‘todo’ == -1 {

/* Set global macros for output */
/* Also check that depvar is in proper range */
/* Note: For this call, eta contains indicator for whether each obs. is in est. sample */
global SGLM_vt "title for variance function"
global SGLM_vf "subtitle showing function definition"
global SGLM_mu "program to call to enforce boundary conditions on µ"
exit

}
if ‘todo’ == 0 {

/* set η to initial value. */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set return = V (µ) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return = ∂V (µ)/∂µ */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return = squared deviance (per observation) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 4 {

/* set return = Anscombe residual */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 5 {

/* set return = log likelihood */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 6 {

/* set return = adjustment for deviance residuals */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error "Unknown call to glm variance function"
exit 198

end
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Syntax of Newey–West kernel-weight functions
program progname, rclass

version 18.0 // (or version 18.5 for StataNow)
args G j
/* G is the maximum lag */
/* j is the current lag */
/* Intermediate calculations go here */
return scalar wt = computed weight
return local setype "Newey-West"
return local sewtype "name of kernel"

end

Global macros available for community-contributed programs

Global macro Description

SGLM V program name of variance (family) evaluator
SGLM L program name of link evaluator
SGLM y dependent variable name
SGLM m binomial denominator
SGLM a negative binomial k
SGLM p power if power() or opower() is used, or

an argument from a user-specified link function
SGLM s1 indicator; set to one if scale is equal to one
SGLM ph value of scale parameter

Example 5

Suppose that we wish to perform Poisson regression with a log-link function. Although this
regression is already possible with standard glm, we will write our own version for illustrative
purposes.

Because we want a log link, η = g(µ) = ln(µ), and for a Poisson family the variance function
is V (µ) = µ.

The Poisson density is given by

f(yi) =
e− exp(µi)eµiyi

yi!

resulting in a log likelihood of

L =

n∑
i=1

{−eµi + µiyi − ln(yi!)}

The squared deviance of the ith observation for the Poisson family is given by

d2i =

{
2µ̂i if yi = 0

2
{
yiln(yi/µ̂i)− (yi − µ̂i)

}
otherwise
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We now have enough information to write our own Poisson-log glm module. We create the file
mylog.ado, which contains

program mylog
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return
if ‘todo’ == -1 {

global SGLM_lt "My Log" // Titles for output
global SGLM_lf "ln(u)"
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’) // η = ln(µ)
exit

}
if ‘todo’ == 1 {

gen double ‘mu’ = exp(‘eta’) // µ = exp(η)
exit

}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’ // ∂µ/∂η = exp(η) = µ

exit
}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’ // ∂2µ/∂η2 = exp(η) = µ

exit
}
di as error "Unknown call to glm link function"
exit 198

end

and we create the file mypois.ado, which contains

program mypois
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return
if ‘todo’ == -1 {

local y "$SGLM y"
local touse "‘eta’" // ‘eta’ marks estimation sample here
capture assert ‘y’>=0 if ‘touse’ // check range of y
if _rc {

di as error ‘"dependent variable ‘y’ has negative values"’
exit 499

}
global SGLM vt "My Poisson" // Titles for output
global SGLM vf "u"
global SGLM mu "glim_mu 0 ." // see note 1
exit

}
if ‘todo’ == 0 { // Initialization of η; see note 2

gen double ‘eta’ = ln(‘mu’)
exit

}
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if ‘todo’ == 1 {
gen double ‘return’ = ‘mu’ // V (µ) = µ

exit
}
if ‘todo’ == 2 { // ∂ V (µ)/∂µ

gen byte ‘return’ = 1
exit

}
if ‘todo’ == 3 { // squared deviance, defined above

local y "$SGLM y"
if "‘y’" == "" {

local y "‘e(depvar)’"
}
gen double ‘return’ = cond(‘y’==0, 2*‘mu’, /*

*/ 2*(‘y’*ln(‘y’/‘mu’)-(‘y’-‘mu’)))
exit

}
if ‘todo’ == 4 { // Anscombe residual; see note 3

local y "$SGLM y"
if "‘y’" == "" {

local y "‘e(depvar)’"
}
gen double ‘return’ = 1.5*(‘y’^(2/3)-‘mu’^(2/3)) / ‘mu’^(1/6)
exit

}
if ‘todo’ == 5 { // log likelihood; see note 4

local y "$SGLM y"
if "‘y’" == "" {

local y "‘e(depvar)’"
}
gen double ‘return’ = -‘mu’+‘y’*ln(‘mu’)-lngamma(‘y’+1)
exit

}
if ‘todo’ == 6 { // adjustment to residual; see note 5

gen double ‘return’ = 1/(6*sqrt(‘mu’))
exit

}
di as error "Unknown call to glm variance function"
error 198

end

Notes:

1. glim mu is a Stata program that will, at each iteration, bring µ̂ back into its plausible range,
should it stray out of it. Here glim mu is called with the arguments zero and missing, meaning
that zero is the lower bound of µ̂ and there exists no upper bound—such is the case for Poisson
models.

2. Here the initial value of η is easy because we intend to fit this model with our user-defined
log link. In general, however, the initialization may need to vary according to the link to obtain
convergence. If so, the global macro SGLM L is used to determine which link is being utilized.

3. The Anscombe formula is given here because we know it. If we were not interested in Anscombe
residuals, we could merely set ‘return’ to missing. Also, the local macro y is set either to
SGLM y if it is in current estimation or to e(depvar) if this function is being accessed by predict.

4. If we were not interested in ML estimation, we could omit this code entirely and just leave an
exit statement in its place. Similarly, if we were not interested in deviance or IRLS optimization,
we could set ‘return’ in the deviance portion of the code (‘todo’==3) to missing.
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5. This code defines the term to be added to the predicted residuals if the adjusted option is
specified. Again, if we were not interested, we could set ‘return’ to missing.

We can now test our Poisson-log module by running it on the airline data presented in [R] poisson.

. use https://www.stata-press.com/data/r18/airline

. list airline injuries n XYZowned

airline injuries n XYZowned

1. 1 11 0.0950 1
2. 2 7 0.1920 0
3. 3 7 0.0750 0
4. 4 19 0.2078 0
5. 5 9 0.1382 0

6. 6 4 0.0540 1
7. 7 3 0.1292 0
8. 8 1 0.0503 0
9. 9 3 0.0629 1

. generate lnN=ln(n)

. glm injuries XYZowned lnN, f(mypois) l(mylog) scale(1)

Iteration 0: Log likelihood = -22.557572
Iteration 1: Log likelihood = -22.332861
Iteration 2: Log likelihood = -22.332276
Iteration 3: Log likelihood = -22.332276

Generalized linear models Number of obs = 9
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 12.70432823 (1/df) Deviance = 2.117388
Pearson = 12.7695081 (1/df) Pearson = 2.128251

Variance function: V(u) = u [My Poisson]
Link function : g(u) = ln(u) [My Log]

AIC = 5.629395
Log likelihood = -22.33227605 BIC = -.4790192

OIM
injuries Coefficient std. err. z P>|z| [95% conf. interval]

XYZowned .6840668 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154286

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603

(Standard errors scaled using dispersion equal to square root of 1.)

These are precisely the results given in [R] poisson and are those that would have been given had
we run glm, family(poisson) link(log). The only minor adjustment we needed to make was
to specify the scale(1) option. If scale() is left unspecified, glm assumes scale(1) for discrete
distributions and scale(x2) for continuous ones. By default, glm assumes that any user-defined
family is continuous because it has no way of checking. Thus, we needed to specify scale(1)
because our model is discrete.

Because we were careful in defining the squared deviance, we could have fit this model with IRLS.
Because log is the canonical link for the Poisson family, we would not only get the same regression
coefficients but also the same standard errors.

https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
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Example 6

Suppose now that we wish to use our log link (mylog.ado) with glm’s binomial family. This task
requires some modification because our current function is not equipped to deal with the binomial
denominator, which we are allowed to specify. This denominator is accessible to our link function
through the global macro SGLM m. We now make the modifications and store them in mylog2.ado.

program mylog2 // <-- changed
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return

if ‘todo’ == -1 {
global SGLM_lt "My Log, Version 2" // <-- changed
if "$SGLM m" == "1" { // <-- changed

global SGLM lf "ln(u)" // <-- changed
} // <-- changed
else global SGLM lf "ln(u/$SGLM m)" // <-- changed
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’/$SGLM m) // <-- changed
exit

}
if ‘todo’ == 1 {

gen double ‘mu’ = $SGLM m*exp(‘eta’) // <-- changed
exit

}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’
exit

}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’
exit

}
di as error "Unknown call to glm link function"
exit 198

end

We can now run our new log link with glm’s binomial family. Using the flour beetle data from
earlier, we have
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. use https://www.stata-press.com/data/r18/beetle, clear

. glm r ldose, f(bin n) l(mylog2) irls

Iteration 1: Deviance = 2212.108
Iteration 2: Deviance = 452.9352
Iteration 3: Deviance = 429.95
Iteration 4: Deviance = 429.2745
Iteration 5: Deviance = 429.2192
Iteration 6: Deviance = 429.2082
Iteration 7: Deviance = 429.2061
Iteration 8: Deviance = 429.2057
Iteration 9: Deviance = 429.2056
Iteration 10: Deviance = 429.2056
Iteration 11: Deviance = 429.2056
Iteration 12: Deviance = 429.2056

Generalized linear models Number of obs = 24
Optimization : MQL Fisher scoring Residual df = 22

(IRLS EIM) Scale parameter = 1
Deviance = 429.205599 (1/df) Deviance = 19.50935
Pearson = 413.088142 (1/df) Pearson = 18.77673

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/n) [My Log, Version 2]

BIC = 359.2884

EIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 8.478908 .4702808 18.03 0.000 7.557175 9.400642
_cons -16.11006 .8723167 -18.47 0.000 -17.81977 -14.40035

For a more detailed discussion on user-defined functions, and for an example of a user-defined
Newey–West kernel weight, see Hardin and Hilbe (2018).

� �
John Ashworth Nelder (1924–2010) was born in Somerset, England. He studied mathematics
and statistics at Cambridge and worked as a statistician at the National Vegetable Research
Station and then Rothamsted Experimental Station. In retirement, he was actively affiliated with
Imperial College London. Nelder was especially well known for his contributions to the theory
of linear models and to statistical computing. He was the principal architect of generalized and
hierarchical generalized linear models and of the programs GenStat and GLIM.

Robert William Maclagan Wedderburn (1947–1975) was born in Edinburgh and studied mathe-
matics and statistics at Cambridge. At Rothamsted Experimental Station, he developed the theory
of generalized linear models with Nelder and originated the concept of quasilikelihood. He died
of anaphylactic shock from an insect bite on a canal holiday.� �
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Stored results
glm, ml stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(df) residual degrees of freedom
e(phi) scale parameter
e(aic) model AIC
e(bic) model BIC
e(ll) log likelihood, if NR
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(deviance) deviance
e(deviance s) scaled deviance
e(deviance p) Pearson deviance
e(deviance ps) scaled Pearson deviance
e(dispers) dispersion
e(dispers s) scaled dispersion
e(dispers p) Pearson dispersion
e(dispers ps) scaled Pearson dispersion
e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise
e(vf) factor set by vfactor(), 1 if not set
e(power) power set by link(power #) or link(opower #)
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) glm
e(cmdline) command as typed
e(depvar) name of dependent variable
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(linkf) link function
e(m) number of binomial trials
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(cons) noconstant, if specified
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) ml or irls
e(opt1) optimization title, line 1
e(opt2) optimization title, line 2
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
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e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

glm, irls stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(df) residual degrees of freedom
e(phi) scale parameter
e(disp) dispersion parameter
e(bic) model BIC
e(N clust) number of clusters
e(deviance) deviance
e(deviance s) scaled deviance
e(deviance p) Pearson deviance
e(deviance ps) scaled Pearson deviance
e(dispers) dispersion
e(dispers s) scaled dispersion
e(dispers p) Pearson dispersion
e(dispers ps) scaled Pearson dispersion
e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise
e(vf) factor set by vfactor(), 1 if not set
e(power) power set by link(power #) or link(opower #)
e(rank) rank of e(V)
e(rc) return code

Macros
e(cmd) glm
e(cmdline) command as typed
e(depvar) name of dependent variable
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(linkf) link function
e(m) number of binomial trials
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e(wtype) weight type
e(wexp) weight expression
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(cons) noconstant, if specified
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) ml or irls
e(opt1) optimization title, line 1
e(opt2) optimization title, line 2
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
The canonical reference on GLM is McCullagh and Nelder (1989). The term “generalized linear

model” is from Nelder and Wedderburn (1972). Many people use the acronym GLIM for GLM models
because of the classic GLM software tool GLIM, by Baker and Nelder (1985). See Dobson and
Barnett (2018) for a concise introduction and overview. See Rabe-Hesketh and Everitt (2007) for
more examples of GLM using Stata. Hoffmann (2004) focuses on applying generalized linear models,
using real-world datasets, along with interpreting computer output, which for the most part is obtained
using Stata.

This discussion highlights the details of parameter estimation and predicted statistics. For a more
detailed treatment, and for information on variance estimation, see Hardin and Hilbe (2018). glm
supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance
estimation.

glm obtains results by IRLS, as described in McCullagh and Nelder (1989), or by maximum
likelihood using Newton–Raphson. The implementation here, however, allows user-specified weights,
which we denote as vj for the jth observation. Let M be the number of “observations” ignoring
weights. Define

wj =


1 if no weights are specified
vj if fweights or iweights are specified
Mvj/(

∑
k vk) if aweights or pweights are specified

https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
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The number of observations is then N =
∑
j wj if fweights are specified and N = M otherwise.

Each IRLS step is performed by regress using wj as the weights.

Let d2j denote the squared deviance residual for the jth observation:

For the Gaussian family, d2j = (yj − µ̂j)2.

For the Bernoulli family (binomial with denominator 1),

d2j =

{
−2ln(1− µ̂j) if yj = 0
−2ln(µ̂j) otherwise

For the binomial family with denominator mj ,

d2j =


2yj ln(yj/µ̂j) + 2(mj − yj)ln

{
(mj − yj)/(mj − µ̂j)

}
if 0 < yj < mj

2mj ln
{
mj/(mj − µ̂j)

}
if yj = 0

2yj ln(yj/µ̂j) if yj = mj

For the Poisson family,

d2j =

{
2µ̂j if yj = 0

2
{
yj ln(yj/µ̂j)− (yj − µ̂j)

}
otherwise

For the gamma family, d2j = −2
{

ln(yj/µ̂j)− (yj − µ̂j)/µ̂j
}

.

For the inverse Gaussian, d2j = (yj − µ̂j)2/(µ̂2
jyj).

For the negative binomial,

d2j =

{
2ln(1 + kµ̂j)/k if yj = 0

2yj ln(yj/µ̂j)− 2{(1 + kyj)/k}ln{(1 + kyj)/(1 + kµ̂j)} otherwise

Let φ = 1 if the scale parameter is set to one; otherwise, define φ = φ̂0(n− k)/n, where φ̂0 is the
estimated scale parameter and k is the number of covariates in the model (including intercept).

Let lnLj denote the log likelihood for the jth observation:

For the Gaussian family,

lnLj = −1

2

[{
(yj − µ̂j)2

φ

}
+ ln(2πφ)

]
For the binomial family with denominator mj (Bernoulli if all mj = 1),

lnLj = φ×


ln{Γ(mj + 1)} − ln{Γ(yj + 1)} − ln{Γ(mj − yj + 1)} if 0 < yj < mj

+(mj − yj) ln(1− µ̂j/mj) + yj ln(µ̂j/mj)

mj ln(1− µ̂j/mj) if yj = 0

mj ln(µ̂j/mj) if yj = mj

For the Poisson family,

lnLj = φ [yj ln(µ̂j)− µ̂j − ln{Γ(yj + 1)}]
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For the gamma family, lnLj = −yj/µ̂j + ln(1/µ̂j).

For the inverse Gaussian,

lnLj = −1

2

{
(yj − µ̂j)2

yj µ̂2
j

+ 3 ln(yj) + ln(2π)

}

For the negative binomial (let m = 1/k),

lnLj =φ [ ln{Γ(m+ yj)} − ln{Γ(yj + 1)} − ln{Γ(m)}
−m ln(1 + µ̂j/m) + yj ln{µ̂j/(µ̂j +m)}]

The overall deviance reported by glm is D2 =
∑
j wjd

2
j . The dispersion of the deviance is D2

divided by the residual degrees of freedom.

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are given by

AIC =
−2 lnL+ 2k

N

BIC = D2 − (N − k) ln(N)

where lnL =
∑
j wj lnLj is the overall log likelihood.

The Pearson deviance reported by glm is
∑
j wjr

2
j . The corresponding Pearson dispersion is the

Pearson deviance divided by the residual degrees of freedom. glm also calculates the scaled versions
of all of these quantities by dividing by the estimated scale parameter.

Acknowledgments
glm was written by James Hardin of the Arnold School of Public Health at the University of

South Carolina and Joseph Hilbe (1944–2017) of Arizona State University, the coauthors of the
Stata Press book Generalized Linear Models and Extensions. The previous version of this routine
was written by Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata
Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model. The original
version of this routine was published in Royston (1994). Royston’s work, in turn, was based on a
prior implementation by Joseph Hilbe, first published in Hilbe (1993). Roger Newson wrote an early
implementation (Newson 1999) of robust variance estimates for GLM. Parts of this entry are excerpts
from Hardin and Hilbe (2018).

References
Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Second International

Symposium on Information Theory, ed. B. N. Petrov and F. Csaki, 267–281. Budapest: Akailseoniai–Kiudo.

Anscombe, F. J. 1953. Contribution of discussion paper by H. Hotelling “New light on the correlation coefficient
and its transforms”. Journal of the Royal Statistical Society, Series B 15: 229–230. https://doi.org/10.1111/j.2517-
6161.1953.tb00136.x.

Baker, R. J., and J. A. Nelder. 1985. The Generalized Linear Interactive Modelling System, Release 3.77. Oxford:
Numerical Algorithms Group.

Basu, A. 2005. Extended generalized linear models: Simultaneous estimation of flexible link and variance functions.
Stata Journal 5: 501–516.

http://www.stata-press.com/books/glmext3.html
http://www.stata-press.com/books/fpsaus.html
https://doi.org/10.1111/j.2517-6161.1953.tb00136.x
https://doi.org/10.1111/j.2517-6161.1953.tb00136.x
http://www.stata-journal.com/article.html?article=st0092


34 glm — Generalized linear models

Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman. 1974. Estimation and inference in nonlinear structural
models. Annals of Economic and Social Measurement 3/4: 653–665.

Cummings, P. 2009. Methods for estimating adjusted risk ratios. Stata Journal 9: 175–196.

Discacciati, A., and M. Bottai. 2017. Instantaneous geometric rates via generalized linear models. Stata Journal 17:
358–371.

Dobson, A. J., and A. G. Barnett. 2018. An Introduction to Generalized Linear Models. 4th ed. Boca Raton, FL:
Chapman and Hall/CRC.

Hardin, J. W., and J. M. Hilbe. 2018. Generalized Linear Models and Extensions. 4th ed. College Station, TX: Stata
Press.

Hilbe, J. M. 1993. sg16: Generalized linear models. Stata Technical Bulletin 11: 20–28. Reprinted in Stata Technical
Bulletin Reprints, vol. 2, pp. 149–159. College Station, TX: Stata Press.

. 2009. Logistic Regression Models. Boca Raton, FL: Chapman and Hall/CRC.

. 2014. Modeling Count Data. New York: Cambridge University Press.

Hoffmann, J. P. 2004. Generalized Linear Models: An Applied Approach. Boston: Pearson.

Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken,
NJ: Wiley.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman and Hall/CRC.

Nelder, J. A. 1975. Robert William MacLagan Wedderburn, 1947–1975. Journal of the Royal Statistical Society,
Series A 138: 587.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society,
Series A 135: 370–384. https://doi.org/10.2307/2344614.

Newey, W. K., and K. D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent
covariance matrix. Econometrica 55: 703–708. https://doi.org/10.2307/1913610.

Newson, R. B. 1999. sg114: rglm—Robust variance estimates for generalized linear models. Stata Technical Bulletin
50: 27–33. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 181–190. College Station, TX: Stata Press.

. 2004. Generalized power calculations for generalized linear models and more. Stata Journal 4: 379–401.

Newson, R. B., and M. Falcaro. 2023. Robit regression in Stata. Stata Journal 23: 658–682.
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Also see
[R] glm postestimation — Postestimation tools for glm

[R] cloglog — Complementary log–log regression

[R] logistic — Logistic regression, reporting odds ratios

[R] nbreg — Negative binomial regression

[R] poisson — Poisson regression

[R] regress — Linear regression

[BAYES] bayes: glm — Bayesian generalized linear models

[FMM] fmm: glm — Finite mixtures of generalized linear regression models

[ME] meglm — Multilevel mixed-effects generalized linear models

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtgee — GEE population-averaged panel-data models

[U] 20 Estimation and postestimation commands
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