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Description
fp <term>: est cmd fits models with the “best”-fitting fractional polynomial substituted for

<term> wherever it appears in est cmd. fp <weight>: regress mpg <weight> foreign would fit
a regression model of mpg on a fractional polynomial in weight and (linear) foreign.

By specifying option fp(), you may set the exact powers to be used. Otherwise, a search through
all possible fractional polynomials up to the degree set by dimension() with the powers set by
powers() is performed.

fp without arguments redisplays the previous estimation results, just as typing est cmd would.
You can type either one. fp will include a fractional polynomial comparison table.

fp generate creates fractional polynomial power variables for a given set of powers. For
instance, fp <weight>: regress mpg <weight> foreign might produce the fractional polynomial
weight(−2,−1) and store weight−2 in weight 1 and weight−1 in weight 2. Typing fp generate
weight^(-2 -1) would allow you to create the same variables in another dataset.

See [R] mfp for multivariable fractional polynomial models.

Quick start
Fit models with fractional polynomials

Find optimal second-degree fractional polynomial of x1 in regression of y on x2 and x3

fp <x1>: regress y <x1> x2 x3

Same as above, but search only powers of −1, −0.5, 1, and 2.
fp <x1>, power(-1 -.5 1 2): regress y <x1> x2 x3

Same as above, but allow search to include third-degree fractional polynomials
fp <x1>, power(-1 -.5 1 2) dimension(3): regress y <x1> x2 x3

Fit model including x1−2 and x12 without performing search
fp <x1>, fp(-2 2): regress y <x1> x2 x3

Rescale x1 to nonextreme positive values when computing fractional polynomials
fp <x1>, scale: regress y <x1> x2 x3

Same as above, and center fractional polynomial of x1 at its scaled mean
fp <x1>, center scale: regress y <x1> x2 x3

Set fractional polynomial to zero for nonpositive values of x1
fp <x1>, zero: regress y <x1> x2 x3

Same as above, and include an indicator variable in the model for nonpositive values of x1
fp <x1>, catzero: regress y <x1> x2 x3
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Create variables corresponding to fractional polynomial powers

Generate x1 1 and x1 2 corresponding to x1−2 and x12

fp generate x1^(-2 2)

Same as above, but generate fractional polynomial variables with automatic scaling and centering
fp generate x1^(-2 2), center scale

Note: In the above examples, regress could be replaced with any estimation command allowing the
fp prefix.

Menu
fp

Statistics > Linear models and related > Fractional polynomials > Fractional polynomial regression

fp generate

Statistics > Linear models and related > Fractional polynomials > Create fractional polynomial variables

Syntax

Estimation

fp <term>
[
, est options

]
: est cmd

Specify that fractional powers of varname be calculated during estimation

fp <term>(varname)
[
, est options

]
: est cmd

Replay estimation results

fp
[
, replay options

]
Create specified fractional polynomial power variables

fp generate
[

type
] [

newvar =
]

varname^(numlist)
[

if
] [

in
] [

, gen options
]

est cmd may be almost any estimation command that stores the e(ll) result. To confirm whether fp
works with a specific est cmd, see the documentation for that est cmd. est cmd may not contain
other prefix commands; see [U] 11.1.10 Prefix commands.

Instances of <term> (with the angle brackets) that occur within est cmd are replaced in est cmd
by a varlist containing the fractional powers of the variable term. These variables will be named
term 1, term 2, . . . .

fp performs est cmd with this substitution, fitting a fractional polynomial regression in term.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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est options Description

Main

powers(# # . . . #) powers to be searched; default is powers(-2 -1 -.5 0 .5 1 2 3)

dimension(#) maximum degree of fractional polynomial; default is dimension(2)

fp(# # . . . #) use specified fractional polynomial

Options

classic perform automatic scaling and centering and omit comparison table
replace replace existing fractional polynomial power variables named

term 1, term 2, . . .
all generate term 1, term 2, . . . in all observations; default is in

observations if esample()

scale(# a # b) use (term+a)/b; default is to use variable term as is
scale specify a and b automatically
center(# c) report centered-on-c results; default is uncentered results
center specify c to be the mean of (scaled) term
zero set term 1, term 2, . . . to zero if scaled term ≤ 0; default is to issue

an error message
catzero same as zero and include term 0 = (term ≤ 0) among

fractional polynomial power variables

Reporting

replay options specify how results are displayed

replay options Description

Reporting

nocompare do not display model-comparison test results
reporting options any options allowed by est cmd for replaying estimation results

gen options Description

Main

replace replace existing fractional polynomial power variables named
term 1, term 2, . . .

scale(# a # b) use (term+a)/b; default is to use variable term as is
scale specify a and b automatically
center(# c) report centered-on-c results; default is uncentered results
center specify c to be the mean of (scaled) term
zero set term 1, term 2, . . . to zero if scaled term ≤ 0; default is to issue

an error message
catzero same as zero and include term 0 = (term ≤ 0) among

fractional polynomial power variables

collect is allowed with fp and fp generate; see [U] 11.1.10 Prefix commands.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Options

Options are presented under the following headings:

Options for fp
Options for fp generate

Options for fp

� � �
Main �

powers(# # . . . #) specifies that a search be performed and details about the search provided.
powers() works with the dimension() option; see below. The default is powers(-2 -1 -.5 0
.5 1 2 3).

dimension(#) specifies the maximum degree of the fractional polynomial to be searched. The default
is dimension(2).

If the defaults for both powers() and dimension() are used, then the fractional polynomial
could be any of the following 44 possibilities:

term(−2)

term(−1)
...

term(3)

term(−2), term(−2)

term(−2), term(−1)

...
term(−2), term(3)

term(−1), term(−2)

...
term(3), term(3)

fp(# # . . . #) specifies that no search be performed and that the fractional polynomial specified be
used. fp() is an alternative to powers() and dimension().

� � �
Options �

classic performs automatic scaling and centering and omits the comparison table. Specifying
classic is equivalent to specifying scale, center, and nocompare.

replace replaces existing fractional polynomial power variables named term 1, term 2, . . . .

all specifies that term 1, term 2, . . . be filled in for all observations in the dataset rather than just
for those in e(sample).

scale(# a # b) specifies that term be scaled in the way specified, namely, that (term+a)/b be
calculated. All values of the scaled term are required to be greater than zero unless you specify
options zero or catzero. Values should not be too large or too close to zero, because by default,
cubic powers and squared reciprocal powers will be considered. When scale(a b) is specified,
values in the variable term are not modified; fp merely remembers to scale the values whenever
powers are calculated.
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You will probably not use scale(a b) for values of a and b that you create yourself, although
you could. It is usually easier just to generate a scaled variable. For instance, if term is age,
and age in your data is required to be greater than or equal to 20, you might generate an age5
variable, for use as term:

. generate age5 = (age-19)/5

scale(a b) is useful when you previously fit a model using automatic scaling (option scale) in
one dataset and now want to create the fractional polynomials in another. In the first dataset, fp
with scale added notes to the dataset concerning the values of a and b. You can see them by
typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

The default is to use term as it is used in calculating fractional powers; thus, term’s values are
required to be greater than zero unless you specify options zero or catzero. Values should not
be too large, because by default, cubic powers will be considered.

scale specifies that term be scaled to be greater than zero and not too large in calculating fractional
powers. See Scaling for more details. When scale is specified, values in the variable term are
not modified; fp merely remembers to scale the values whenever powers are calculated.

center(# c) reports results for the fractional polynomial in (scaled) term, centered on c. The default
is to perform no centering.

term(p1,p2,...,pm)-c(p1,p2,...,pm) is reported. This makes the constant coefficient (intercept) easier
to interpret. See Centering for more details.

center performs center(c), where c is the mean of (scaled) term.

zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive
values of term are not allowed, because we will be calculating natural logarithms and fractional
powers of term. Thus, an error message is issued.

zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.

catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and
includes a dummy variable indicating where nonpositive values of (scaled) term appear in the
model.

� � �
Reporting �

nocompare suppresses display of the comparison tests.

reporting options are any options allowed by est cmd for replaying estimation results.

Options for fp generate

� � �
Main �

replace replaces existing fractional polynomial power variables named term 1, term 2, . . . .

scale(# a # b) specifies that term be scaled in the way specified, namely, that (term+a)/b be
calculated. All values of the scaled term are required to be greater than zero unless you specify
options zero or catzero. Values should not be too large or too close to zero, because by default,
cubic powers and squared reciprocal powers will be considered. When scale(a b) is specified,
values in the variable term are not modified; fp merely remembers to scale the values whenever
powers are calculated.
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You will probably not use scale(a b) for values of a and b that you create yourself, although
you could. It is usually easier just to generate a scaled variable. For instance, if term is age,
and age in your data is required to be greater than or equal to 20, you might generate an age5
variable, for use as term:

. generate age5 = (age-19)/5

scale(a b) is useful when you previously fit a model using automatic scaling (option scale) in
one dataset and now want to create the fractional polynomials in another. In the first dataset, fp
with scale added notes to the dataset concerning the values of a and b. You can see them by
typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

The default is to use term as it is used in calculating fractional powers; thus, term’s values are
required to be greater than zero unless you specify options zero or catzero. Values should not
be too large, because by default, cubic powers will be considered.

scale specifies that term be scaled to be greater than zero and not too large in calculating fractional
powers. See Scaling for more details. When scale is specified, values in the variable term are
not modified; fp merely remembers to scale the values whenever powers are calculated.

center(# c) reports results for the fractional polynomial in (scaled) term, centered on c. The default
is to perform no centering.

term(p1,p2,...,pm)-c(p1,p2,...,pm) is reported. This makes the constant coefficient (intercept) easier
to interpret. See Centering for more details.

center performs center(c), where c is the mean of (scaled) term.

zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive
values of term are not allowed, because we will be calculating natural logarithms and fractional
powers of term. Thus, an error message is issued.

zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.

catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and
includes a dummy variable indicating where nonpositive values of (scaled) term appear in the
model.

Remarks and examples stata.com

Remarks are presented under the following headings:
Fractional polynomial regression
Scaling
Centering
Examples

Fractional polynomial regression

Regression models based on fractional polynomial functions of a continuous covariate are described
by Royston and Altman (1994).

Fractional polynomials increase the flexibility afforded by the family of conventional polynomial
models. Although polynomials are popular in data analysis, linear and quadratic functions are limited
in their range of curve shapes, whereas cubic and higher-order curves often produce undesirable
artifacts such as edge effects and waves.

http://stata.com
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Fractional polynomials differ from regular polynomials in that 1) they allow logarithms, 2) they
allow noninteger powers, and 3) they allow powers to be repeated.

We will write a fractional polynomial in x as

x(p1,p2,...,pm)′β

We will write x(p) to mean a regular power except that x(0) is to be interpreted as meaning ln(x)
rather than x(0) = 1.

Then if there are no repeated powers in (p1, p2, . . . , pm),

x(p1,p2,...,pm)′β = β0 + β1x
(p1) + β2x

(p2) + · · ·+ βmx
(pm)

Powers are allowed to repeat in fractional polynomials. Each time a power repeats, it is multiplied
by another ln(x). As an extreme case, consider the fractional polynomial with all-repeated powers,
say, m of them,

x(p,p,...,p)′β = β0 + β1x
(p) + β2x

(p) ln(x) + · · ·+ βmx
(p){ln(x)}m−1

Thus, the fractional polynomial x(0,0,2)′β would be

x(0,0,2)′β = β0 + β1x
(0) + β2x

(0) ln(x) + β3x
(2)

= β0 + β1 ln(x) + β2{ln(x)}2 + β3x
2

With this definition, we can obtain a much wider range of shapes than can be obtained with regular
polynomials. The following graphs appeared in Royston and Sauerbrei (2008, sec. 4.5). The first
graph shows the shapes of differing fractional polynomials.
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The second graph shows some of the curve shapes available with different βs for the degree-2
fractional polynomial, x(−2,2).

In modeling a fractional polynomial, Royston and Sauerbrei (2008) recommend choosing powers
from among {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. By default, fp chooses powers from this set, but other
powers can be explicitly specified in the powers() option.

fp <term>: est cmd fits models with the terms of the best-fitting fractional polynomial substituted
for <term> wherever it appears in est cmd. We will demonstrate with auto.dta, which contains
repair records and other information about a variety of vehicles in 1978.

We use fp to find the best fractional polynomial in automobile weight (lbs.) (weight) for the
linear regression of miles per gallon (mpg) on weight and an indicator of whether the vehicle is
foreign (foreign).

By default, fp will fit degree-2 fractional polynomial (FP2) models and choose the fractional powers
from the set {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. Because car weight is measured in pounds and will have
a cubic transformation applied to it, we shrink it to a smaller scale before estimation by dividing by
1,000.

We modify the existing weight variable for conciseness and to facilitate the comparison of tables.
When applying a data transformation in practice, rather than modifying the existing variables, you
should create new variables that hold the transformed values.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. replace weight = weight/1000
variable weight was int now float
(74 real changes made)

. fp <weight>: regress mpg <weight> foreign
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

Test Residual Deviance
weight df Deviance std. dev. diff. P Powers

omitted 4 456.347 5.356 75.216 0.000
linear 3 388.366 3.407 7.236 0.082 1
m = 1 2 381.806 3.259 0.675 0.733 -.5
m = 2 0 381.131 3.268 0.000 -- -2 -2

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 2 based on deviance difference,
F(df, 68).

Source SS df MS Number of obs = 74
F(3, 70) = 52.95

Model 1696.05949 3 565.353163 Prob > F = 0.0000
Residual 747.399969 70 10.6771424 R-squared = 0.6941

Adj R-squared = 0.6810
Total 2443.45946 73 33.4720474 Root MSE = 3.2676

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 15.88527 20.60329 0.77 0.443 -25.20669 56.97724
weight_2 127.9349 47.53106 2.69 0.009 33.13723 222.7326
foreign -2.222515 1.053782 -2.11 0.039 -4.324218 -.1208131

_cons 3.705981 3.367949 1.10 0.275 -3.011182 10.42314

fp begins by showing the model-comparison table. This table shows the best fractional polynomial
model of weight for each examined degree, m, which is obtained by searching through all possible
power combinations. The row labeled omitted describes the null model, which entirely omits weight
from the model. A separate row is provided for the model with a linear function of weight because
it is often the default when including a predictor in the model.

The fractional powers of the models are shown in the Powers column. An estimate of the residual
standard error is given in the Residual std. dev. column. The model deviance, which we define as
twice the negative log likelihood, is given in the Deviance column. The Deviance diff. column
reports the difference in deviance compared with the model with the lowest deviance, which is always
the model with the highest-degree fractional polynomial.

The Test df column displays the degrees of freedom used when testing a model’s fit against
the fit of the model with the lowest deviance. For normal error models such as linear regression,
a partial F test is performed, and Test df is the numerator degrees of freedom of the F test. In
other settings, a likelihood-ratio test is performed, and Test df is the degrees of freedom of the χ2

statistic. In both cases, the p-value for the test is reported in column P.

Under robust variance estimation and some other cases (see [R] lrtest), the likelihood-ratio test
cannot be performed. When the likelihood-ratio test cannot be performed on the model specified in
est cmd, fp still reports the model-comparison table, but the comparison tests are not performed.

https://www.stata.com/manuals/rlrtest.pdf#rlrtest
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fp reports the “best” model as the model with the lowest deviance; however, users may choose a
more efficient model based on the comparison table. They may choose the lowest degree model that
the partial F test (or likelihood-ratio test) fails to reject in favor of the lowest deviance model.

After the comparison table, the results of the estimation command for the lowest deviance model
are shown. Here the best model has terms weight(−2,−2). However, based on the model-comparison
table, we can reject the model without weight and the linear model at the 0.1 significance level. We
fail to reject the m = 1 model at any reasonable level. We will choose the FP1 model, which includes
weight(−.5).

We use fp again to estimate the parameters for this model. We use the fp() option to specify
what powers we want to use; this option specifies that we do not want to perform a search for
the best powers. We also specify the replace option to overwrite the previously created fractional
polynomial power variables.

. fp <weight>, fp(-.5) replace: regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20865 2 844.604325 Prob > F = 0.0000
Residual 754.25081 71 10.6232508 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149157

_cons -17.58651 3.397992 -5.18 0.000 -24.36192 -10.81111

Alternatively, we can use fp generate to create the fractional polynomial variable corresponding
to weight(−.5) and then use regress. We store weight(−.5) in the new variable wgt nsqrt.

. fp generate wgt_nsqrt=weight^(-.5)

. regress mpg wgt_nsqrt foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20874 2 844.604371 Prob > F = 0.0000
Residual 754.250718 71 10.6232495 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

wgt_nsqrt_1 66.89665 6.021748 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176328 -.0149155

_cons -17.58651 3.397991 -5.18 0.000 -24.36191 -10.81111

Scaling

Fractional polynomials are defined only for positive term variables. By default, fp will assume
that the variable x is positive and attempt to compute fractional powers of x. If the positive value
assumption is incorrect, an error will be reported and estimation will not be performed.
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If the values of the variable are too large or too small, the reported results of fp may be difficult
to interpret. By default, cubic powers and squared reciprocal powers will be considered in the search
for the best fractional polynomial in term.

We can scale the variable x to 1) make it positive and 2) ensure its magnitude is not too large or
too small.

Suppose you have data on hospital patients with age as a fractional polynomial variable of interest.
age is required to be greater than or equal to 20, so you might generate an age5 variable by typing

. generate age5 = (age-19)/5

A unit change in age5 is equivalent to a five-year change in age, and the minimum value of age5
is 1/5 instead of 20.

In the automobile example of Fractional polynomial regression, our term variable was automobile
weight (lbs.). Cars weigh in the thousands of pounds, so cubing their weight figures results in large
numbers. We prevented this from being a problem by shrinking the weight by 1,000; that is, we typed

. replace weight = weight/1000

Calendar year is another type of variable that can have a problematically large magnitude. We can
shrink this by dividing by 10, making a unit change correspond to a decade.

. generate decade = calendar_year/10

You may also have a variable that measures deviation from zero. Perhaps x has already been
demeaned and is symmetrically about zero. The fractional polynomial in x will be undefined for half
of its domain. We can shift the location of x, making it positive by subtracting its minimum and
adding a small number to it. Suppose x ranges from −4 to 4; we could use

. generate newx = x+5

Rescaling ourselves provides easily communicated results. We can tell exactly how the scaling
was performed and how it should be performed in similar applications.

Alternatively, fp can scale the fractional polynomial variable so that its values are positive and the
magnitude of the values are not too large. This can be done automatically or by directly specifying
the scaling values.

Scaling can be automatically performed with fp by specifying the scale option. If term has
nonpositive values, the minimum value of term is subtracted from each observation of term. In this
case, the counting interval, the minimum distance between the sorted values of term, is also added
to each observation of term.

After adjusting the location of term so that its minimum value is positive, creating term∗, automatic
scaling will divide each observation of term by a power of ten. The exponent of this scaling factor
is given by

p = log10 {max(term∗)−min(term∗)}

p∗ = sign(p)floor (|p|)

Rather than letting fp automatically choose the scaling of term, you may specify adjustment and
scale factors a and b by using the scale(a b) option. Fractional powers are then calculated using
the (term+a)/b values.

When scale or scale(a b) is specified, values in the variable term are not modified; fp merely
remembers to scale the values whenever powers are calculated.
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In addition to fp, both scale and scale(a b) may be used with fp generate.

You will probably not use scale(a b) with fp for values of a and b that you create yourself,
although you could. As we demonstrated earlier, it is usually easier just to generate a scaled variable.

scale(a b) is useful when you previously fit a model using scale in one dataset and now want
to create the fractional polynomials in another. In the first dataset, fp with scale added notes to
the dataset concerning the values of a and b. You can see them by typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

When you apply the scaling rules of a previously fit model to new data with the scale(a b)
option, it is possible that the scaled term may have nonpositive values. fp will be unable to calculate
the fractional powers of the term in this case and will issue an error.

The options zero and catzero cause fp and fp generate to output zero values for each fractional
polynomial variable when the input (scaled) fractional polynomial variable is nonpositive. Specifying
catzero causes a dummy variable indicating nonpositive values of the (scaled) fractional polynomial
variable to be included in the model. A detailed example of the use of catzero and zero is shown
in example 3 below.

Using the scaling options, we can fit our previous model again using the auto.dta. We specify
scale(0 1000) so that fp will shrink the magnitude of weight in estimating the regression. This is
done for demonstration purposes because our scaling rule is simple. As mentioned before, in practice,
you would probably only use scale(a b) when applying the scaling rules from a previous analysis.
Allowing fp to scale does have the advantage of not altering the original variable, weight.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. fp <weight>, fp(-.5) scale(0 1000): regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20861 2 844.604307 Prob > F = 0.0000
Residual 754.250846 71 10.6232514 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149159

_cons -17.58651 3.397992 -5.18 0.000 -24.36192 -10.81111

The scaling is clearly indicated in the variable notes for the generated variable weight 1.

. notes weight_1

weight_1:
1. fp term 1 of x^(-.5), where x is weight scaled.
2. Scaling was user specified: x = (weight+a)/b where a=0 and b=1000
3. Fractional polynomial variables created by fp <weight>, fp(-.5)

scale(0 1000): regress mpg <weight> foreign
4. To re-create the fractional polynomial variables, for instance, in

another dataset, type fp gen double weight^(-.5), scale(0 1000)
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Centering

The fractional polynomial of term, centered on c is(
term(p1,...,pm) − c(p1,...,pm)

)
′β

The intercept of a centered fractional polynomial can be interpreted as the effect at zero for all the
covariates. When we center the fractional polynomial terms using c, the intercept is now interpreted
as the effect at term = c and zero values for the other covariates.

Suppose we wanted to center the fractional polynomial of x with powers (0, 0, 2) at x = c.(
x(0,0,2) − c(0,0,2)

)
′β

= β0 + β1

(
x(0) − c(0)

)
+ β2

{
x(0) ln(x)− c(0) ln(c)

}
+ β3

(
x(2) − c(2)

)
= β0 + β1{ln(x)− ln(c)}+ β2

[
{ln(x)}2 − {ln(c)}2

]
+ β3

(
x2 − c2

)
When center is specified, fp centers based on the sample mean of (scaled) term. A previously

chosen value for centering, c, may also be specified in center(c). This would be done when applying
the results of a previous model fitting to a new dataset.

The center and center(c) options may be used in fp or fp generate.

Returning to the model of mileage per gallon based on automobile weight and foreign origin, we
refit the model with the fractional polynomial of weight centered at its scaled mean.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. fp <weight>, fp(-.5) scale(0 1000) center: regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20861 2 844.604307 Prob > F = 0.0000
Residual 754.250846 71 10.6232514 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149159

_cons 20.91163 .4624143 45.22 0.000 19.9896 21.83366

Note that the coefficients for weight 1 and foreign do not change. Only the intercept cons
changes. It can be interpreted as the estimated average miles per gallon of an American-made car of
average weight.



14 fp — Fractional polynomial regression

Examples

Example 1: Linear regression

Consider the serum immunoglobulin G (IgG) dataset from Isaacs et al. (1983), which consists of
298 independent observations in young children. The dependent variable sqrtigg is the square root
of the IgG concentration, and the independent variable age is the age of each child. (Preliminary
Box–Cox analysis shows that a square root transformation removes the skewness in IgG.)

The aim is to find a model that accurately predicts the mean of sqrtigg given age. We use fp
to find the best FP2 model (the default option). We specify center for automatic centering. The age
of each child is small in magnitude and positive, so we do not use the scaling options of fp or scale
ourselves.

. use https://www.stata-press.com/data/r18/igg, clear
(Immunoglobulin in children)

. fp <age>, scale center: regress sqrtigg <age>
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

Test Residual Deviance
age df Deviance std. dev. diff. P Powers

omitted 4 427.539 0.497 108.090 0.000
linear 3 337.561 0.428 18.113 0.000 1
m = 1 2 327.436 0.421 7.987 0.020 0
m = 2 0 319.448 0.416 0.000 -- -2 2

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 2 based on deviance difference,
F(df, 293).

Source SS df MS Number of obs = 298
F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

The new variables created by fp contain the best-fitting fractional polynomial powers of age, as
centered by fp. For example, age 1 is centered by subtracting the mean of age raised to the power
−2.

The variables created by fp and fp generate are centered or scaled as specified by the user, which
is reflected in the estimated regression coefficients and intercept. Centering does have its advantages
(see Centering earlier in this entry). By default, fp will not perform scaling or centering. For a more
detailed discussion, see Royston and Sauerbrei (2008, sec. 4.11).

The fitted curve has an asymmetric S shape. The best model has powers (−2, 2) and deviance
319.448. We reject lesser degree models: the null, linear, and natural log power models at the 0.05
level. As many as 44 models have been fit in the search for the best powers. Now let’s look at
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models of degree ≤ 4. The highest allowed degree is specified in dimension(). We overwrite the
previously generated fractional polynomial power variables by including replace.

. fp <age>, dimension(4) center replace: regress sqrtigg <age>
(fitting 494 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

Test Residual Deviance
age df Deviance std. dev. diff. P Powers

omitted 8 427.539 0.497 109.795 0.000
linear 7 337.561 0.428 19.818 0.007 1
m = 1 6 327.436 0.421 9.692 0.149 0
m = 2 4 319.448 0.416 1.705 0.798 -2 2
m = 3 2 319.275 0.416 1.532 0.476 -2 1 1
m = 4 0 317.744 0.416 0.000 -- 0 3 3 3

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 4 based on deviance difference,
F(df, 289).

Source SS df MS Number of obs = 298
F(4, 293) = 32.63

Model 22.5754541 4 5.64386353 Prob > F = 0.0000
Residual 50.6768927 293 .172958678 R-squared = 0.3082

Adj R-squared = 0.2987
Total 73.2523469 297 .246640898 Root MSE = .41588

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 .8761824 .1898721 4.61 0.000 .5024962 1.249869
age_2 -.1922029 .0684934 -2.81 0.005 -.3270044 -.0574015
age_3 .2043794 .074947 2.73 0.007 .0568767 .3518821
age_4 -.0560067 .0212969 -2.63 0.009 -.097921 -.0140924
_cons 2.238735 .0482705 46.38 0.000 2.143734 2.333736

It appears that the FP4 model is not significantly different from the other fractional polynomial models
(at the 0.05 level).

Let’s compare the curve shape from the m = 2 model with that from a conventional quartic
polynomial whose fit turns out to be significantly better than a cubic (not shown). We use the ability
of fp both to generate the required powers of age, namely, (1, 2, 3, 4) for the quartic and (−2, 2)
for the second-degree fractional polynomial, and to fit the model. The fp() option is used to specify
the powers. We use predict to obtain the fitted values of each regression. We fit both models with
fp and graph the resulting curves with twoway scatter.
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. fp <age>, center fp(1 2 3 4) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2 age_3 age_4

Source SS df MS Number of obs = 298
F(4, 293) = 32.65

Model 22.5835458 4 5.64588646 Prob > F = 0.0000
Residual 50.668801 293 .172931061 R-squared = 0.3083

Adj R-squared = 0.2989
Total 73.2523469 297 .246640898 Root MSE = .41585

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 2.047831 .4595962 4.46 0.000 1.143302 2.952359
age_2 -1.058902 .2822803 -3.75 0.000 -1.614456 -.5033479
age_3 .2284917 .0667591 3.42 0.001 .0971037 .3598798
age_4 -.0168534 .0053321 -3.16 0.002 -.0273475 -.0063594
_cons 2.240012 .0480157 46.65 0.000 2.145512 2.334511

. predict fit1
(option xb assumed; fitted values)

. label variable fit1 "Quartic"

. fp <age>, center fp(-2 2) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2

Source SS df MS Number of obs = 298
F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

. predict fit2
(option xb assumed; fitted values)

. label variable fit2 "FP 2"

. scatter sqrtigg fit1 fit2 age, c(. l l) m(o i i) msize(small)
> lpattern(. -_.) ytitle("Square root of IgG") xtitle("Age (years)")
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The quartic curve has an unsatisfactory wavy appearance that is implausible for the known behavior
of IgG, the serum level of which increases throughout early life. The fractional polynomial curve
(FP2) increases monotonically and is therefore biologically the more plausible curve. The two models
have approximately the same deviance.

Example 2: Cox regression

Data from Smith et al. (1992) contain times to complete healing of leg ulcers in a randomized,
controlled clinical trial of two treatments in 192 elderly patients. Several covariates were available,
of which an important one is mthson, the number of months since the recorded onset of the ulcer.
This time is recorded in whole months, not fractions of a month; therefore, some zero values are
recorded.

Because the response variable is time to an event of interest and some (in fact, about one-half) of
the times are censored, using Cox regression to analyze the data is appropriate. We consider fractional
polynomials in mthson, adjusting for four other covariates: age; ulcarea, the area of tissue initially
affected by the ulcer; deepppg, a binary variable indicating the presence or absence of deep vein
involvement; and treat, a binary variable indicating treatment type.

We fit fractional polynomials of degrees 1 and 2 with fp. We specify scale to perform automatic
scaling on mthson. This makes it positive and ensures that its magnitude is not too large. (See Scaling
for more details.) The display option nohr is specified before the colon so that the coefficients and
not the hazard ratios are displayed.

The center option is specified to obtain automatic centering. age and ulcarea are also demeaned
by using summarize and then subtracting the returned result r(mean).

In Cox regression, there is no constant term, so we cannot see the effects of centering in the
table of regression estimates. The effects would be present if we were to graph the baseline hazard
or survival function because these functions are defined with all predictors set equal to 0.

In these graphs, we will see the estimated baseline hazard or survival function under no deep vein
involvement or treatment and under mean age, ulcer area, and number of months since the recorded
onset of the ulcer.
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. use https://www.stata-press.com/data/r18/legulcer2, clear
(Leg ulcer clinical trial)

. stset ttevent, fail(healed)

Survival-time data settings

Failure event: healed!=0 & healed<.
Observed time interval: (0, ttevent]

Exit on or before: failure

192 total observations
0 exclusions

192 observations remaining, representing
92 failures in single-record/single-failure data

13,825 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 206

. quietly sum age

. replace age = age - r(mean)
variable age was byte now float
(192 real changes made)

. quietly sum ulcarea

. replace ulcarea = ulcarea - r(mean)
variable ulcarea was int now float
(192 real changes made)

. fp <mthson>, center scale nohr: stcox <mthson> age ulcarea deepppg treat
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

Test Deviance
mthson df Deviance diff. P Powers

omitted 4 754.345 17.636 0.001
linear 3 751.680 14.971 0.002 1
m = 1 2 738.969 2.260 0.323 -.5
m = 2 0 736.709 0.000 -- .5 .5

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Cox regression with Breslow method for ties

No. of subjects = 192 Number of obs = 192
No. of failures = 92
Time at risk = 13,825

LR chi2(6) = 108.59
Log likelihood = -368.35446 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

mthson_1 -2.81425 .6996385 -4.02 0.000 -4.185516 -1.442984
mthson_2 1.541451 .4703143 3.28 0.001 .6196521 2.46325

age -.0261111 .0087983 -2.97 0.003 -.0433556 -.0088667
ulcarea -.0017491 .000359 -4.87 0.000 -.0024527 -.0010455
deepppg -.5850499 .2163173 -2.70 0.007 -1.009024 -.1610758

treat -.1624663 .2171048 -0.75 0.454 -.5879838 .2630513
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The best-fitting fractional polynomial of degree 2 has powers (0.5, 0.5) and deviance 736.709. However,
this model does not fit significantly better than the fractional polynomial of degree 1 (at the 0.05
level), which has power −0.5 and deviance 738.969. We prefer the model with m = 1.

. fp <mthson>, replace center scale nohr fp(-.5): stcox <mthson> age ulcarea
> deepppg treat
-> stcox mthson_1 age ulcarea deepppg treat

Cox regression with Breslow method for ties

No. of subjects = 192 Number of obs = 192
No. of failures = 92
Time at risk = 13,825

LR chi2(5) = 106.33
Log likelihood = -369.48426 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

mthson_1 .1985592 .0493922 4.02 0.000 .1017523 .2953662
age -.02691 .0087875 -3.06 0.002 -.0441331 -.0096868

ulcarea -.0017416 .0003482 -5.00 0.000 -.0024241 -.0010591
deepppg -.5740759 .2185134 -2.63 0.009 -1.002354 -.1457975

treat -.1798575 .2175726 -0.83 0.408 -.6062921 .246577

The hazard for healing is much higher for patients whose ulcer is of recent onset than for those who
have had an ulcer for many months.

A more appropriate analysis of this dataset, if one wanted to model all the predictors, possibly
with fractional polynomial functions, would be to use mfp; see [R] mfp.

Example 3: Logistic regression

The zero option permits fitting a fractional polynomial model to the positive values of a covariate,
taking nonpositive values as zero. An application is the assessment of the effect of cigarette smoking
as a risk factor. Whitehall 1 is an epidemiological study, which was examined in Royston and
Sauerbrei (2008), of 18,403 male British Civil Servants employed in London. We examine the data
collected in Whitehall 1 and use logistic regression to model the odds of death based on a fractional
polynomial in the number of cigarettes smoked.

Nonsmokers may be qualitatively different from smokers, so the effect of smoking (regarded as a
continuous variable) may not be continuous between zero cigarettes and one cigarette. To allow for
this possibility, we model the risk as a constant for the nonsmokers and as a fractional polynomial
function of the number of cigarettes for the smokers, adjusted for age.

The dependent variable all10 is an indicator of whether the individual passed away in the 10 years
under study. cigs is the number of cigarettes consumed per day. After loading the data, we demean
age and create a dummy variable, nonsmoker. We then use fp to fit the model.

https://www.stata.com/manuals/rmfp.pdf#rmfp
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. use https://www.stata-press.com/data/r18/smoking, clear
(Smoking and mortality data)

. quietly sum age

. replace age = age - r(mean)
variable age was byte now float
(17,260 real changes made)

. generate byte nonsmoker = cond(cigs==0, 1, 0) if cigs < .

. fp <cigs>, zero: logit all10 <cigs> nonsmoker age
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

Test Deviance
cigs df Deviance diff. P Powers

omitted 4 9990.804 46.096 0.000
linear 3 9958.801 14.093 0.003 1
m = 1 2 9946.603 1.895 0.388 0
m = 2 0 9944.708 0.000 -- -1 -1

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Logistic regression Number of obs = 17,260
LR chi2(4) = 1029.03
Prob > chi2 = 0.0000

Log likelihood = -4972.3539 Pseudo R2 = 0.0938

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_1 -1.285867 .3358483 -3.83 0.000 -1.944117 -.6276162
cigs_2 -1.982424 .572109 -3.47 0.001 -3.103736 -.8611106

nonsmoker -1.223749 .1119583 -10.93 0.000 -1.443183 -1.004315
age .1194541 .0045818 26.07 0.000 .1104739 .1284343

_cons -1.591489 .1052078 -15.13 0.000 -1.797693 -1.385286

Omission of the zero option would cause fp to halt with an error message because nonpositive
covariate values (for example, values of cigs) are invalid unless the scale option is specified.

A closely related approach involves the catzero option. Here we no longer need to have nonsmoker
in the model, because fp creates its own dummy variable cigs 0 to indicate whether the individual
does not smoke on that day.
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. fp <cigs>, catzero replace: logit all10 <cigs> age
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)

Fractional polynomial comparisons:

Test Deviance
cigs df Deviance diff. P Powers

omitted 5 10175.75 231.047 0.000
linear 3 9958.80 14.093 0.003 1
m = 1 2 9946.60 1.895 0.388 0
m = 2 0 9944.71 0.000 -- -1 -1

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Logistic regression Number of obs = 17,260
LR chi2(4) = 1029.03
Prob > chi2 = 0.0000

Log likelihood = -4972.3539 Pseudo R2 = 0.0938

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_0 -1.223749 .1119583 -10.93 0.000 -1.443183 -1.004315
cigs_1 -1.285867 .3358483 -3.83 0.000 -1.944117 -.6276162
cigs_2 -1.982424 .572109 -3.47 0.001 -3.103736 -.8611106

age .1194541 .0045818 26.07 0.000 .1104739 .1284343
_cons -1.591489 .1052078 -15.13 0.000 -1.797693 -1.385286

Under both approaches, the comparison table suggests that we can accept the FP1 model instead
of the FP2 model. We estimate the parameters of the accepted model—that is, the one that uses the
natural logarithm of cigs—with fp.

. fp <cigs>, catzero replace fp(0): logit all10 <cigs> age
-> logit all10 cigs_0 cigs_1 age

Logistic regression Number of obs = 17,260
LR chi2(3) = 1027.13
Prob > chi2 = 0.0000

Log likelihood = -4973.3016 Pseudo R2 = 0.0936

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_0 .1883732 .1553093 1.21 0.225 -.1160274 .4927738
cigs_1 .3469842 .0543552 6.38 0.000 .2404499 .4535185

age .1194976 .0045818 26.08 0.000 .1105174 .1284778
_cons -3.003767 .1514909 -19.83 0.000 -3.300683 -2.70685

The high p-value for cigs 0 in the output indicates that we cannot reject that there is no extra
effect at zero for nonsmokers.
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Stored results
In addition to the results that est cmd stores, fp stores the following in e():

Scalars
e(fp dimension) degree of fractional polynomial
e(fp center mean) value used for centering or .
e(fp scale a) value used for scaling or .
e(fp scale b) value used for scaling or .
e(fp compare df2) denominator degree of freedom in F test

Macros
e(fp cmd) fp, search(): or fp, powers():
e(fp cmdline) full fp command as typed
e(fp variable) fractional polynomial variable
e(fp terms) generated fp variables
e(fp gen cmdline) fp generate command to re-create e(fp terms) variables
e(fp catzero) catzero, if specified
e(fp zero) zero, if specified
e(fp compare type) F or chi2

Matrices
e(fp fp) powers used in fractional polynomial
e(fp compare) results of model comparisons
e(fp compare stat) F test statistics
e(fp compare df1) chi2 degrees of freedom or numerator degrees of freedom of F test
e(fp compare fp) powers of comparison models
e(fp compare length) encoded string for display of row titles
e(fp powers) powers that are searched

fp generate stores the following in r():

Scalars
r(fp center mean) value used for centering or .
r(fp scale a) value used for scaling or .
r(fp scale b) value used for scaling or .

Macros
r(fp cmdline) full fp generate command as typed
r(fp variable) fractional polynomial variable
r(fp terms) generated fp variables
r(fp catzero) catzero, if specified
r(fp zero) zero, if specified

Matrices
r(fp fp) powers used in fractional polynomial

Methods and formulas
The general definition of a fractional polynomial, accommodating possible repeated powers, may

be written for functions H1(x), . . . ,Hm(x) of x > 0 as

β0 +

m∑
j=1

βjHj(x)

where H1(x) = x(p1) and for j = 2, . . . ,m,

Hj(x) =

{
x(pj) if pj 6= pj−1
Hj−1(x) ln(x) if pj = pj−1
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For example, a fractional polynomial of degree 3 with powers (1, 3, 3) has H1(x) = x, H2(x) = x3,
and H3(x) = x3 ln(x) and equals β0 + β1x+ β2x

3 + β3x
3 ln(x).

We can express a fractional polynomial in vector notation by using H(x) = [H1(x), . . . ,Hd(x)]
′.

We define x(p1,p2,...,pm) = [H(x)′, 1]′. Under this notation, we can write

x(1,3,3)′β = β0 + β1x+ β2x
3 + β3x

3 ln(x)

The fractional polynomial may be centered so that the intercept can be more easily interpreted.
When centering the fractional polynomial of x at c, we subtract c(p1,p2,...,pm) from x(p1,p2,...,pm),
where c(p1,p2,...,pd) = [H(x)′, 0]′. The centered fractional polynomial is(

x(p1,...,pd) − c(p1,...,pd)
)
′β

The definition may be extended to allow x ≤ 0 values. For these values, the fractional polynomial
is equal to the intercept β0 or equal to a zero-offset term α0 plus the intercept β0.

The deviance D of a model is defined as −2 times its maximized log likelihood. For normal error
models, we use the formula

D = n

(
1− l + ln

2πRSS

n

)
where n is the sample size, l is the mean of the lognormalized weights (l = 0 if the weights are all
equal), and RSS is the residual sum of squares as fit by regress.

When fp is used to search for the best combination of powers, it reports a table comparing
fractional polynomial models of degree k < m with the degree m fractional polynomial model, which
will have the lowest deviance. The comparison table also includes the linear model, in which <term>
is not raised to a power, and the null model, in which <term> is omitted.

The Test df column of the model comparison table does not correspond to the model degrees of
freedom for the individual models but rather to the degrees of freedom of a test comparing that model
with the model with the lowest deviance. For normal error models, this is the numerator degrees of
freedom of a partial F test; for other models, it is the degrees of freedom of the likelihood-ratio
χ2 test. When calculating the test degrees of freedom, the command accounts for the two types of
parameters that are being estimated by fp: coefficients (βj) and powers. Because the powers in a
fractional polynomial are chosen from a finite set rather than from the entire real line, the degrees
of freedom defined in this way are approximate and generally yield somewhat conservative tests
(Royston and Altman 1994).

The p-values reported by fp are calculated differently for normal error models than for other
models. Let Dk and Dm be the deviances of the models with degrees k and m, respectively. For
normal error models, a variance ratio F is calculated as

F =
d2
d1

{
exp
(
Dk −Dm

n

)
− 1

}
where d1 is the numerator df, the number of additional parameters estimated by the degree m model
over the degree k model. d2 is the denominator degrees of freedom and equals the residual degrees of
freedom of the degree m model minus the number of powers estimated, m. The p-value is obtained
by referring F to an F distribution on (d1, d2) df.

For nonnormal models, the p-value is obtained by referring Dk −Dm to a χ2 distribution on d1
degrees of freedom, with d1 defined as above.
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