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Description

estat ic computes Akaike’s (AIC), consistent Akaike’s (CAIC), corrected Akaike’s (AICc), and
Schwarz’s Bayesian (BIC) information criteria.

Quick start
Display AIC and BIC

estat ic

Display CAIC and BIC

estat ic, aicconsistent

Display AICc and BIC

estat ic, aiccorrected

Display AIC, BIC, AICc, and CAIC

estat ic, all

Specify N to be used in calculating BIC as 500
estat ic, n(500)

Specify N and degrees of freedom to be used in calculating all information criteria as 500 and 10,
respectively

estat ic, n(500) df(10) all

Menu for estat
Statistics > Postestimation
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Syntax

estat ic
[
, options

]
options Description

aiccorrected report AICc instead of AIC
aicconsistent report CAIC instead of AIC
all report all four information criteria: AIC, BIC, AICc, and CAIC
n(#) specify N to be used in calculating BIC, AICc, and CAIC;

see [R] IC note
df(#) specify degrees of freedom k to be used in calculating AIC, BIC,

AICc, and CAIC

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

aiccorrected specifies that AICc be computed instead of AIC. This information criterion is a
second-order approximation and is recommended for small sample sizes.

Only one of aiccorrected, aicconsistent, or all is allowed.

aicconsistent specifies that CAIC be computed instead of AIC. This information criterion is a
consistent version of AIC; that is, the probability of selecting the “true model” approaches 1 as
sample size increases.

Only one of aicconsistent, aiccorrected, or all is allowed.

all produces a table showing all four information criteria: AIC, BIC, AICc, and CAIC.

Only one of all, aiccorrected, or aicconsistent is allowed.

n(#) specifies N to be used in calculating BIC, AICc, and CAIC; see [R] IC note.

df(#) specifies degrees of freedom k to be used in calculating AIC, BIC, AICc, and CAIC. By default,
k is the number of estimated parameters.

Remarks and examples stata.com

estat ic calculates four information criteria used to compare models fit to the same dataset.
Unlike likelihood-ratio, Wald, and similar testing procedures, the models need not be nested to
compare the information criteria. The information criteria are constructed as a function of the log
likelihood lnL, the number of estimated parameters (degrees of freedom) k, and, in some cases,
the number of observations N . Because they are based on the log-likelihood function, information
criteria are available only after commands that report the log likelihood.

The use of information criteria is subjective, and no formal inference can be drawn from the
reported values. In a typical approach, a set of potential models is selected, and a superior model is
selected from the values of information criteria. A superior model is the model with the lowest value
of information criterion. For example, given two models, the model with the lowest AIC fits the data
better than the model with the larger AIC. For details, see Methods and formulas.

https://www.stata.com/manuals/ricnote.pdf#rICnote
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/ricnote.pdf#rICnote
http://stata.com
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Example 1

In [R] mlogit, we fit a model explaining the type of insurance a person has on the basis of age,
gender, race, and site of study. Here we refit the model with and without the site dummies and
compare the models.

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)

. mlogit insure age male nonwhite
(output omitted )

. estat ic

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 615 -555.8545 -545.5833 8 1107.167 1142.54

Note: BIC uses N = number of observations. See [R] IC note.

. mlogit insure age male nonwhite i.site
(output omitted )

. estat ic

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 615 -555.8545 -534.3616 12 1092.723 1145.783

Note: BIC uses N = number of observations. See [R] IC note.

The AIC indicates that the model including the site dummies fits the data better, whereas BIC
indicates the opposite. As is often the case, different model-selection criteria have led to conflicting
conclusions.

https://www.stata.com/manuals/rmlogit.pdf#rmlogit
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Example 2

In example 1, we compared AIC and BIC. Here we focus on comparing AIC and AICc for small
sample size. For simplicity, we are using the same health insurance dataset but running mlogit with
the age < 30 condition to reduce the sample size.

. mlogit insure age male nonwhite if age < 30
(output omitted )

. estat ic, all

Information criteria

Model N ll(null) ll(model) df

. 87 -76.93025 -70.36684 8

Note: BIC, AICc, and CAIC use N = number of observations.
See [R] IC note.

Model AIC BIC AICc CAIC

. 156.7337 176.4609 158.5798 184.4609

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

. mlogit insure age male nonwhite i.site if age < 30
(output omitted )

. estat ic, all

Information criteria

Model N ll(null) ll(model) df

. 87 -76.93025 -66.03298 12

Note: BIC, AICc, and CAIC use N = number of observations.
See [R] IC note.

Model AIC BIC AICc CAIC

. 156.066 185.6569 160.2822 197.6569

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

Burnham and Anderson (2002) recommend using AICc when the ratio N/k < 40. The AIC suggests
that the model with the site dummies is preferred, whereas AICc reports the opposite result.

Example 3

As we discuss in the technical note below, for the linear mixed models fit using restricted maximum
likelihood (REML), one needs to be careful when comparing models using the standard information
criteria, especially when the fixed-effects specifications differ across models. In this example, we
show how to use n(#) and df(#) to modify the the standard N and k used in the information criteria
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when we compare such models. As in [ME] mixed, we consider the dataset from Munnell (1990) and
estimate a Cobb–Douglas production function, which examines the productivity of public capital in
each state’s private output (Baltagi, Song, and Jung 2001).

Suppose we want to compare two models:

. use https://www.stata-press.com/data/r18/productivity
(Public capital productivity)

. mixed gsp private emp hwy water other unemp || region: || state:, reml
(output omitted )

. estimates store model1

. mixed gsp private emp hwy unemp || region: hwy || state: unemp, reml
(output omitted )

. estimates store model2

The two models differ in both their fixed-effects and random-effects specifications. By default,
the number of degrees of freedom in estat ic is calculated as k = kf + kr, where kf and kr
are the number of estimated fixed-effects and random-effects parameters, respectively. For REML,
Gurka (2006) evaluates the performance of various information criteria. He discusses using k = kr
and different possible values for N . Here, we follow the Vonesh and Chinchilli (1997) approach and
choose N − kf . Finally, we run estat ic to compare the models:

. estimates restore model1
(results model1 are active now)

. estat ic, n(809) df(3)

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

model1 809 . 1404.71 3 -2803.42 -2789.333

. estimates restore model2
(results model2 are active now)

. estat ic, n(811) df(5)

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

model2 811 . 1413.557 5 -2817.114 -2793.623

Both AIC and BIC indicate that the second model is preferable.

Technical note

glm and binreg, ml report a slightly different version of AIC and BIC; see [R] glm for the
formulas used. That version is commonly used within the generalized linear models literature; see, for
example, Hardin and Hilbe (2018). The literature on information criteria is vast; see, among others,
Akaike (1973), Sawa (1978), and Raftery (1995). Judge et al. (1985) discuss the use of information
criteria in econometrics. Royston and Sauerbrei (2008, chap. 2) examine the use of information criteria
as an alternative to stepwise procedures for selecting model variables.

https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/rglm.pdf#rglm
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For linear mixed models, when restricted maximum likelihood is used, the information criteria with
default degrees of freedom and the number of observations cannot be used to compare models with
varying sets of fixed effects, because the likelihood of restricted maximum likelihood is dependent
on the fixed-effects design matrix (Harville 1974; Gurka 2006). By default, the degrees of freedom
in estat ic is the sum of the dimension of fixed-effect parameters and the number of covariance
parameters. Therefore, only models with the same sets of fixed effects can be compared. However,
for each model, the df(#) option can be specified manually to allow comparison with different sets
of fixed effects. There are also different views on which number should be used as N to calculate
BIC, AICc, and CAIC. For example, see Vonesh and Chinchilli (1997) and Kass and Raftery (1995).
Use the n(#) option to pass a desired number of observations to the estat ic command. For details,
see [R] IC note.

Stored results
estat ic stores the following in r():

Matrices
r(S) row vector with columns (N, ll(null), ll(model), df, and information criteria)

Methods and formulas
There are two main large-sample notions of information criteria: efficiency and consistency (Burn-

ham and Anderson 2002). Efficient criteria target the best finite dimension model under the assumption
that the unknown “true model” has infinite dimension. In contrast, assuming that the true data-generating
model is finite and fixed, the consistent criterion selects the correct model with probability approaching
1 as N →∞. The AIC and AICc belong to the efficient class, while the BIC and CAIC to the consistent
class.

Akaike’s (1974) information criterion is defined as

AIC = −2 lnL+ 2k

where lnL is the maximized log-likelihood of the model and k is the number of parameters estimated.
Some authors define AIC as the expression above divided by the sample size.

AIC performs poorly when there are too many parameters in relation to the sample size. Hurvich
and Tsai (1989) derived a second-order variant of AIC called AICc,

AICc = AIC +
2k(k + 1)

N − k − 1

where N is the sample size. See [R] IC note for additional information on calculating and interpreting
N . Compared with AIC, AICc has an additional bias-correction term, and for large N and small k, this
term is negligible. Burnham and Anderson (2002) recommend using AICc when the ratio N/k < 40.

Schwarz’s (1978) Bayesian information criterion is another measure of fit defined as

BIC = −2 lnL+ k lnN

Bozdogan (1987) proposed a consistent version of AIC called CAIC,

CAIC = −2 lnL+ k( lnN + 1)

https://www.stata.com/manuals/ricnote.pdf#rICnote
https://www.stata.com/manuals/ricnote.pdf#rICnote
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Burnham and Anderson (2002, chap. 6) argue that employing and comparing consistent and efficient
information criteria in the same situation contrasts with the fact that they were designed to answer
different questions. Thus, one needs to be careful when interpreting the results.

� �
Hirotugu Akaike (1927–2009) was born in Fujinomiya City, Shizuoka Prefecture, Japan. He was
the son of a silkworm farmer. He gained BA and DSc degrees from the University of Tokyo.
Akaike’s career from 1952 at the Institute of Statistical Mathematics in Japan culminated in
service as Director General; after 1994, he was Professor Emeritus. His best-known work in a
prolific career is on what is now known as the Akaike information criterion (AIC), which was
formulated to help selection of the most appropriate model from a number of candidates.

Gideon E. Schwarz (1933–2007) was a professor of statistics at the Hebrew University, Jerusalem.
He was born in Salzburg, Austria, and obtained an MSc in 1956 from the Hebrew University and
a PhD in 1961 from Columbia University. His interests included stochastic processes, sequential
analysis, probability, and geometry. He is best known for the Bayesian information criterion
(BIC).� �
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[R] estat summarize — Summarize estimation sample

[R] estat vce — Display covariance matrix estimates

[R] estimates stats — Model-selection statistics
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