Title stata.com

esize — Effect size based on mean comparison

Description Quick start Menu Syntax

Options Remarks and examples Stored results Methods and formulas

References Also see

Description

esize calculates effect sizes for comparing the difference between the means of a continuous variable for two groups. In the first form, esize calculates effect sizes for the difference between the mean of *varname* for two groups defined by *groupvar*. In the second form, esize calculates effect sizes for the difference between *varname*₁ and *varname*₂, assuming unpaired data.

esizei is the immediate form of esize; see [U] 19 Immediate commands. In the first form, esizei calculates the effect size for comparing the difference between the means of two groups. In the second form, esizei calculates the effect size for an F test after an ANOVA.

Quick start

Cohen's d and Hedges's g comparing the difference in means of v for two independent groups in catvar

```
esize twosample v, by(catvar)
```

Same as above, but with group data stored in v1 and v2

esize unpaired v1==v2

Same as above, but use 90% confidence level

esize unpaired v1==v2, level(90)

Cohen's d and Hedges's g for means of v for groups in catvar1 calculated over each level of catvar2

by catvar2: esize twosample v, by(catvar1)

Menu

esize

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Effect size based on mean comparison

esizei

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Effect-size calculator

Syntax

Effect sizes for two independent samples using groups

```
esize \underline{two}sample varname [if] [in], by(groupvar) [options]
```

Effect sizes for two independent samples using variables

```
esize unpaired varname_1 == varname_2 [if] [in], [options]
```

Immediate form of effect sizes for two independent samples

esizei
$$\#_{\mathrm{obs}1}$$
 $\#_{\mathrm{mean}1}$ $\#_{\mathrm{sd}1}$ $\#_{\mathrm{obs}2}$ $\#_{\mathrm{mean}2}$ $\#_{\mathrm{sd}2}$ $\left[$, options $\right]$

Immediate form of effect sizes for F tests after an ANOVA

esizei
$$\#_{\mathrm{df}1}$$
 $\#_{\mathrm{df}2}$ $\#_F$ $\left[$, $\underline{\mathtt{l}}\mathtt{evel}(\#)$ $\right]$

options	Description
Main	
<u>coh</u> ensd	report Cohen's d (1988)
hedgesg	report Hedges's g (1981)
glassdelta	report Glass's Δ (Smith and Glass 1977) using each group's standard deviation
pbcorr	report the point-biserial correlation coefficient (Pearson 1909)
all	report all estimates of effect size
<u>une</u> qual	use unequal variances
<u>w</u> elch	use Welch's (1947) approximation
<u>l</u> evel(#)	set confidence level; default is level(95)

by is allowed with esize, and collect is allowed with esize and esizei; see [U] 11.1.10 Prefix commands.

Options

Main

by (groupvar) specifies the groupvar that defines the two groups that esize will use to estimate the effect sizes. Do not confuse the by() option with the by prefix; you can specify both.

cohensd specifies that Cohen's d (1988) be reported.

hedgesg specifies that Hedges's g (1981) be reported.

glassdelta specifies that Glass's Δ (Smith and Glass 1977) be reported.

pbcorr specifies that the point-biserial correlation coefficient (Pearson 1909) be reported.

all specifies that all estimates of effect size be reported. The default is Cohen's d and Hedges's g. unequal specifies that the data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch's formula (1947) rather than from Satterthwaite's approximation formula (1946), which is the default when unequal is specified. Specifying welch implies unequal.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level (95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

stata.com

Remarks are presented under the following headings:

Introduction Estimating effect sizes Immediate form Video example

Introduction

Whereas p-values are used to assess the statistical significance of a result, measures of effect size are used to assess the practical significance of a result. Effect sizes can be broadly categorized as "measures of group differences" (the d family) and "measures of association" (the r family); see Ellis (2010, table 1.1). The d family includes estimators such as Cohen's d, Hedges's q, and Glass's Δ . The r family includes estimators such as the point-biserial correlation coefficient, η^2 , ε^2 , and ω^2 (also see estat esize in [R] regress postestimation). For an introduction to the concepts and calculation of effect sizes, see Kline (2013) and Thompson (2006). For a more detailed discussion, see Kirk (1996), Ellis (2010), Cumming (2012), Grissom and Kim (2012), and Kelley and Preacher (2012).

Note that there is much variation in the definitions of measures of effect size (Kline 2013). As Ellis (2010, 27) cautions, "However, beware the inconsistent terminology. What is labeled here as q was labeled by Hedges and Olkin as d and vice versa. For these authors writing in the early 1980s, q was the mainstream effect-size index developed by Cohen and refined by Glass (hence q for Glass). However, since then g has become synonymous with Hedges's equation (not Glass's) and the reason it is called Hedges's q and not Hedges's h is because it was originally named after Glass—even though it was developed by Larry Hedges. Confused?"

To avoid confusion, esize and esizei closely follow the notation of Hedges (1981), Smithson (2001), Kline (2013), and Ellis (2010).

Estimating effect sizes

Example 1: Effect size for two independent samples using by()

Suppose we are interested in question 1 from the fictitious depression.dta: "My statistical software makes me feel sad". We might have conducted a t test to test the null hypothesis that there is no difference in response by sex. We could then compute various measures of effect size to describe the magnitude of the effect of sex.

. use $https://www.stata-press.com/data/r18/depression \\ (Fictitious depression inventory data based on the Beck Depression Inventory)$

. esize twosample qu1, by(sex) all

Effect size based on mean comparison

Obs per group:	
Female =	712
Male =	288

Effect size	Estimate	[95% conf.	interval]
Cohen's d Hedges's g Glass's Delta 1 Glass's Delta 2 Point-biserial r	0512417 0512032 0517793 0499786 0232208	1881184 187977 1886587 1868673 0849629	.0856607 .0855963 .0851364 .086997

Cohen's d, Hedges's g, and both estimates of Glass's Δ indicate that the score for females is 0.05 standard deviations lower than the score for males. The point-biserial correlation coefficient indicates that there is a small, negative correlation between the scores for females and males.

□ Technical note

Glass's Δ has traditionally been estimated for experimental studies using the control group standard deviation rather than the pooled standard deviation. Kline (2013) notes that the choice of group becomes arbitrary for data arising from observational studies and recommends the reporting of Glass's Δ using each group standard deviation.

4

Example 2: Effect size for two independent samples by a third variable

If we are interested in the same effect sizes from example 1 stratified by race, we could use the by prefix with the sort option to accomplish this task.

. by race, sort: esize twosample qu1, by(sex)

-> race = Hispanic

Effect size based on mean comparison

Obs per group:

Female =

Male =

88

45

Effect size	Estimate	[95% conf.	interval]
Cohen's d	1042883	463503	.2553235
Hedges's g	1036899	4608434	

-> race = Black

Effect size based on mean comparison

Obs per group:

Female = 259 95

Male =

Effect size	Estimate	[95% conf.	interval]
Cohen's d	1720681	4073814	.063489
Hedges's g	1717011	4065127	

-> race = White

Effect size based on mean comparison

Obs per group:

Female =

Male = 148

365

Effect size	Estimate	[95% conf.	interval]
Cohen's d	.0479511	1430932	.2389486
Hedges's g	.0478807	1428831	

Example 3: Bootstrap confidence intervals for effect sizes

Simulation studies have shown that bootstrap confidence intervals may be preferable to confidence intervals based on the noncentral t distribution when the variable of interest does not have a normal distribution (Kelley 2005; Algina, Keselman, and Penfield 2006). Bootstrap confidence intervals can be easily estimated for effect sizes using the bootstrap prefix.

- . use https://www.stata-press.com/data/r18/depression (Fictitious depression inventory data based on the Beck Depression Inventory)
- . set seed 12345
- . bootstrap r(d) r(g), reps(1000) nodots nowarn: esize twosample qu1, by(sex)

Bootstrap results

Number of obs = 1,000Replications = 1,000

Command: esize twosample qu1, by(sex)

_bs_1: r(d) _bs_2: r(g)

	Observed coefficient	Bootstrap std. err.	z	P> z		-based interval]
_bs_1 _bs_2		.0742692 .0742134	-0.69 -0.69	0.490 0.490	1968066 1966587	.0943233

1

Example 4: Effect sizes for two independent samples using variables

Sometimes, the data of interest are stored in two separate variables. We can calculate effect sizes for the two groups by using the unpaired version of esize.

- . use https://www.stata-press.com/data/r18/fuel
- . esize unpaired mpg1==mpg2

Effect size based on mean comparison

	Nu	24	
Effect size	Estimate	[95% conf.	interval]
Cohen's d Hedges's g	5829654 5628243	-1.394934 -1.34674	.2416105 .2332631

Immediate form

Example 5: Immediate form for effect sizes for two means

Often we do not have access to raw data, but we are given summary statistics in a report or manuscript. To calculate the effect sizes from summary statistics, we can use the immediate command esizei. For example, Kline (2013) in table 4.2 shows summary statistics for a hypothetical sample where mean₁ = 13, $sd_1 = 2.74$, $mean_2 = 11$, and $sd_2 = 2.24$; there are 30 people in each group. We can estimate the effect sizes from these summary data using esizei:

. esizei 30 13 2.74 30 11 2.24

Effect size based on mean comparison

	0bs	Group 1 = Group 2 =	30 30
Effect size	Estimate	[95% conf.	interval]
Cohen's d Hedges's g	.7991948 .7888081	.2695509 .2660477	1.322465 1.305277

Example 6: Immediate form for effect sizes for F tests after an ANOVA

esizei can also be used to compute η^2 , ε^2 , and ω^2 for F tests after an ANOVA. The following example from Smithson (2001, 623) illustrates the use of esizei for $df_{\rm num}=4$, $df_{\rm den}=50$, and F = 4.2317:

. esizei 4 50 4.2317, level(90)

Effect sizes for linear models

Effect size	Estimate	[90% conf.	interval]
Eta-squared Epsilon-squared Omega-squared	.2529151 .1931483 .1903049	.0521585	.3603621

Video example

Tour of effect sizes

Stored results

esize and esizei for comparing two means store the following in r():

```
Scalars
    r(d)
                            Cohen's d
    r(lb_d)
                            lower confidence bound for Cohen's d
    r(ub_d)
                            upper confidence bound for Cohen's d
                            Hedges's g
    r(g)
    r(lb_g)
                            lower confidence bound for Hedges's g
    r(ub_g)
                            upper confidence bound for Hedges's g
    r(delta1)
                            Glass's \Delta for group 1
    r(lb_delta1)
                            lower confidence bound for Glass's \Delta for group 1
    r(ub_delta1)
                            upper confidence bound for Glass's \Delta for group 1
    r(delta2)
                            Glass's \Delta for group 2
    r(lb_delta2)
                            lower confidence bound for Glass's \Delta for group 2
    r(ub_delta2)
                            upper confidence bound for Glass's \Delta for group 2
    r(r_pb)
                            point-biserial correlation coefficient
                            lower confidence bound for the point-biserial correlation coefficient
    r(lb_r_pb)
    r(ub_r_pb)
                            upper confidence bound for the point-biserial correlation coefficient
    r(N_1)
                            sample size n_1
    r(N_2)
                            sample size n_2
    r(df_t)
                            degrees of freedom
    r(level)
                            confidence level
```

esizei for F tests after ANOVA stores the following in r():

```
\begin{array}{lll} \text{Scalars} & & & & & & \\ & \text{r(eta2)} & & & & & & \\ & \text{r(1b\_eta2)} & & & & & \\ & \text{r(ub\_eta2)} & & & & & \\ & \text{r(epsilon2)} & & & & & \\ & \text{r(omega2)} & & & & & \\ & \text{r(level)} & & & & & \\ & & & & & & \\ \end{array}
```

Methods and formulas

For the d family, the effect-size parameter of interest is the scaled difference between the means given by

$$\delta = \frac{(\mu_1 - \mu_2)}{\sigma}$$

One of the most popular estimators of effect size is Cohen's d, given by

Cohen's
$$d = \frac{(\overline{x}_1 - \overline{x}_2)}{s^*}$$

where

$$s^* = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Hedges (1981) showed that Cohen's d is biased and proposed the unbiased estimator

Hedges's
$$g = \text{Cohen's } d \times c(m)$$

where $m = n_1 + n_2 - 2$ and

$$c(m) = \frac{\Gamma(\frac{m}{2})}{\sqrt{\frac{m}{2}}\Gamma(\frac{m-1}{2})}$$

Glass (Smith and Glass 1977) proposed an estimator for δ in the context of designed experiments,

Glass's
$$\Delta = \frac{(\overline{x}_{\text{treated}} - \overline{x}_{\text{control}})}{s_{\text{control}}}$$

where s_{control} is the standard deviation for the control group.

As noted above, esize and esize report two estimates of Glass's Δ : one using the standard deviation for group 1 and the other using the standard deviation for group 2:

Glass's
$$\Delta_1 = \frac{(\overline{x}_1 - \overline{x}_2)}{s_1}$$

and

Glass's
$$\Delta_2 = \frac{(\overline{x}_1 - \overline{x}_2)}{s_2}$$

For the r family, the effect-size parameter of interest is the ratio of the variance attributable to an effect and the total variance:

$$\eta^2 = \frac{\sigma_{\text{effect}}^2}{\sigma_{\text{total}}^2}$$

A popular estimator of η when there are two groups is the point-biserial correlation coefficient,

$$r_{\rm PB} = \frac{t}{\sqrt{t^2 + \mathrm{df}}}$$

where t is the t statistic for the difference between the means of the two groups, and df is the corresponding degrees of freedom. Satterthwaite's or Welch's adjustment (see [R] **ttest** for details) to the degrees of freedom can be used to calculate $r_{\rm PB}$ by specifying the unequal or welch option, respectively.

When more than two means are being compared, as in the case of an ANOVA with p groups, a popular estimator of effect size is the correlation ratio denoted η^2 (Fisher 1925; Kerlinger and Lee 2000). η^2 can be computed directly as the ratio of the SS_{effect} and the SS_{total} or as a function of the F statistic with numerator degrees of freedom equal to df_{num} and denominator degrees of freedom equal to df_{den}.

$$\widehat{\eta}^2 = \frac{F}{F + \mathrm{df_{den}/df_{num}}}$$

Like its equivalent estimator R^2 , η^2 has an upward bias. Less biased estimators of effect size are ε^2 and ω^2 (Grissom and Kim 2012).

$$\widehat{\varepsilon}^2 = \frac{F - 1}{F + \mathrm{df_{den}/df_{num}}} = \widehat{\eta}^2 - \frac{\mathrm{df_{num}}}{\mathrm{df_{den}}} (1 - \widehat{\eta}^2)$$

$$\widehat{\omega}^2 = \frac{F - 1}{F + (\mathrm{df_{den}} + 1)/\mathrm{df_{num}}}$$

To calculate $\hat{\eta}^2$, $\hat{\varepsilon}^2$, and $\hat{\omega}^2$ directly after anova or regress, see estat esize in [R] regress postestimation.

Cohen's d, Hedges's g, and Glass's Δ have been shown to have a noncentral t distribution (Hedges 1981) with noncentrality parameter equal to

$$\lambda = \delta \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

Confidence intervals are calculated by finding the noncentrality parameters λ_{lower} and λ_{upper} that correspond to

$$Pr(df, \delta, \lambda_{lower}) = 1 - \frac{\alpha}{2}$$

and

$$\Pr(\mathrm{df}, \delta, \lambda_{\mathrm{upper}}) = \frac{\alpha}{2}$$

using the function npnt(df,t,p). The noncentrality parameters are then transformed back to the effect-size scale:

$$\delta_{\text{lower}} = \lambda_{\text{lower}} \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$$

and

$$\delta_{\text{upper}} = \lambda_{\text{upper}} \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$$

(see Venables [1975]; Steiger and Fouladi [1997]; Cumming and Finch [2001]; Smithson [2001]).

Confidence intervals for the point-biserial correlation coefficient are calculated similarly and transformed back to the effect-size scale as

$$r_{\text{lower}} = \frac{\lambda_{\text{lower}}}{\sqrt{\lambda_{\text{lower}}^2 + \text{df}}}$$

and

$$r_{
m upper} = rac{\lambda_{
m upper}}{\sqrt{\lambda_{
m upper}^2 + {
m df}}}$$

Following Smithson's (2001) notation, the F statistic is written as

$$F_{\text{df}_{\text{num}}} df_{\text{den}} = f^2 (df_{\text{num}}/df_{\text{den}})$$

This equation has a noncentral F distribution with noncentrality parameter:

$$\lambda = f^2(\mathrm{df_{num}} + \mathrm{df_{den}} + 1)$$

where
$$f^2 = n^2/(1-n^2)$$
.

Confidence intervals for $\hat{\eta}^2$ are calculated by finding the noncentrality parameters λ_{lower} and λ_{upper} for a noncentral F distribution that correspond to

$$\Pr(\mathrm{df_{num}},\mathrm{df_{den}},F,\lambda_{\mathrm{lower}}) = 1 - \frac{\alpha}{2}$$

and

$$Pr(df_{num}, df_{den}, F, \lambda_{upper}) = \frac{\alpha}{2}$$

using the function npnF(df_1 , df_2 , f, p). The noncentrality parameters are transformed back to the \hat{n}^2 scale as

$$\widehat{\eta}_{lower}^2 = \frac{\lambda_{lower}}{\lambda_{lower} + df_{num} + df_{den} + 1}$$

and

$$\widehat{\eta}_{\mathrm{upper}}^2 = \frac{\lambda_{\mathrm{upper}}}{\lambda_{\mathrm{upper}} + df_{\mathrm{num}} + df_{\mathrm{den}} + 1}$$

While confidence intervals for $\hat{\varepsilon}^2$ can be constructed using the same transformation that links it with $\hat{\eta}^2$, there are several arguments for not using them in practice. See Smithson (2003, 54) for further details.

Fred Nichols Kerlinger (1910–1991) was born in New York City. He studied music at New York University and graduated magna cum laude with a degree in education and philosophy. After graduation, he joined the U.S. Army and served as a counterintelligence officer in Japan in 1946. Kerlinger earned an MA and a PhD in educational psychology from the University of Michigan and held faculty appointments at several universities, including New York University. He was president of the American Educational Research Association and is best known for his popular and influential book *Foundations of Behavioral Research* (1964), which introduced Fisher's (1925) η^2 statistic to behavioral researchers.

William Lee Hays (1926–1995) was born in Clarksville, Texas. He studied mathematics and psychology at Paris Junior College in Paris, Texas, and at East Texas State College. He earned BS and MS degrees from North Texas State University. Upon completion of his PhD in psychology at the University of Michigan, he joined the faculty, where he eventually became associate vice president for academic affairs. In 1977, Hays accepted an appointment as vice president for academic affairs at the University of Texas at Austin, where he remained until his death in 1995. Hays is best known for his book *Statistics for Psychologists* (1963), which introduced the ω^2 statistic (and is actually denoted here by ε^2).

References

Algina, J., H. J. Keselman, and R. D. Penfield. 2006. Confidence interval coverage for Cohen's effect size statistic. Educational and Psychological Measurement 66: 945–960. https://doi.org/10.1177/0013164406288161.

Baldwin, S. 2019. Psychological Statistics and Psychometrics Using Stata. College Station, TX: Stata Press.

Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum.

Cumming, G. 2012. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. New York: Routledge.

Cumming, G., and S. Finch. 2001. A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. *Educational and Psychological Measurement* 61: 532–574. https://doi.org/10.1177/0013164401614002.

- Ellis, P. D. 2010. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge: Cambridge University Press.
- Fisher, R. A. 1925. Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd.
- Grissom, R. J., and J. J. Kim. 2012. Effect Sizes for Research: Univariate and Multivariate Applications. 2nd ed. New York: Routledge.
- Hays, W. L. 1963. Statistics for Psychologists. New York: Holt, Rinehart and Winston.
- Hedges, L. V. 1981. Distribution theory for Glass's estimator of effect size and related estimators. *Journal of Educational Statistics* 6: 107–128. https://doi.org/10.2307/1164588.
- Huber, C. 2013. Measures of effect size in Stata 13. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2013/09/05/measures-of-effect-size-in-stata-13/.
- Kelley, K. 2005. The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals. *Educational and Psychological Measurement* 65: 51–69. http://doi.org/10.1177/0013164404264850.
- Kelley, K., and K. J. Preacher. 2012. On effect size. Psychological Methods 17: 137–152. https://doi.org/10.1037/a0028086.
- Kerlinger, F. N. 1964. Foundations of Behavioral Research. New York: Holt, Rinehart and Winston.
- Kerlinger, F. N., and H. B. Lee. 2000. Foundations of Behavioral Research. 4th ed. Belmont, CA: Wadsworth.
- Kirk, R. E. 1996. Practical significance: A concept whose time has come. *Educational and Psychological Measurement* 56: 746–759. https://doi.org/10.1177/0013164496056005002.
- Kline, R. B. 2013. Beyond Significance Testing: Statistics Reform in the Behavioral Sciences. 2nd ed. Washington, DC: American Psychological Association.
- Miller, D. J., J. T. Nguyen, and M. Bottai. 2020. emagnification: A tool for estimating effect-size magnification and performing design calculations in epidemiological studies. *Stata Journal* 20: 548–564.
- Pearson, K. 1909. On a new method of determining correlation between a measured character A, and a character B, of which only the percentage of cases wherein B exceeds (or falls short of) a given intensity is recorded for each grade of A. *Biometrika* 7: 96–105. http://doi.org/10.2307/2345365.
- Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance components. *Biometrics Bulletin* 2: 110–114. https://doi.org/10.2307/3002019.
- Shaw, B. P. 2022. Effect sizes for contrasts of estimated marginal effects. Stata Journal 22: 134-157.
- Smith, M. L., and G. V. Glass. 1977. Meta-analysis of psychotherapy outcome studies. *American Psychologist* 32: 752–760. http://doi.org/10.1037/0003-066X.32.9.752.
- Smithson, M. 2001. Correct confidence intervals for various regression effect sizes and parameters: The importance of noncentral distributions in computing intervals. Educational and Psychological Measurement 61: 605–632. https://doi.org/10.1177/00131640121971392.
- ----. 2003. Confidence Intervals. Thousand Oaks, CA: Sage.
- Steiger, J. H., and R. T. Fouladi. 1997. Noncentrality interval estimation and the evaluation of statistical models. In What If There Were No Significance Tests?, ed. L. L. Harlow, S. A. Mulaik, and J. H. Steiger, 221–257. Mahwah, NJ: Erlbaum.
- Thompson, B. 2006. Foundations of Behavioral Statistics: An Insight-Based Approach. New York: Guilford Press.
- Venables, W. 1975. Calculation of confidence intervals for noncentrality parameters. *Journal of the Royal Statistical Society, Series B* 37: 406–412. https://doi.org/10.1111/j.2517-6161.1975.tb01554.x.
- Welch, B. L. 1947. The generalization of 'student's' problem when several different population variances are involved. *Biometrika* 34: 28–35. https://doi.org/10.2307/2332510.

Also see

- [R] bitest Binomial probability test
- [R] ci Confidence intervals for means, proportions, and variances
- [R] mean Estimate means
- [R] **oneway** One-way analysis of variance
- [R] **prtest** Tests of proportions
- [R] **sdtest** Variance-comparison tests
- [R] **ttest** t tests (mean-comparison tests)

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985-2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

