Title stata.com

churdle postestimation — Postestimation tools for churdle

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands

The following standard postestimation commands are available after churdle:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian information criteria (AIC, CAIC, AICc, and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
etable	table of estimation results
*forecast	dynamic forecasts and simulations
*hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	conditional means, residuals, etc.
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

^{*}forecast, hausman, and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as conditional expectation of *depvar*, residuals, linear predictions, standard errors, and probabilities.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic equation(eqno)]
predict [type] stub* [if] [in], scores
```

statistic	Description		
Main			
ystar	conditional expectation of depvar; the default		
<u>r</u> esiduals	residuals		
ystar(a,b)	$E(y_j^*), \ y_j^* = \max\{a, \min(y_j, b)\}$		
xb	linear prediction		
stdp	standard error of the linear prediction		
pr(a,b)	$Pr(a < y_j < b)$		
e(a,b)	$E(y_j a < y_j < b)$		

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

where a and b may be numbers or variables; a missing $(a \ge .)$ means $-\infty$, and b missing $(b \ge .)$ means $+\infty$; see [U] 12.2.1 Missing values. For churdle exponential, b is . (missing).

Options for predict

Main

ystar, the default, calculates the conditional expectation of the dependent variable.

residuals calculates the residuals.

ystar(a,b) calculates $E(y_i^*)$. a and b are specified as they are for pr(). If a and b are equal to the lower and upper bounds specified in churdle, then $E(y_i^*)$ is equivalent to the predicted value of the dependent variable ystar.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

```
pr(a,b) calculates Pr(a < y_i < b), the probability that y_i | \mathbf{x}_i would be observed in the interval
   (a,b).
```

a and b may be specified as numbers or variable names; lb and ub are variable names; pr(20,30) calculates $Pr(20 < y_j < 30)$; pr(lb, ub) calculates $Pr(lb < y_j < ub)$; and pr(20, ub) calculates Pr(20 < y_i < ub).

a missing ($a \ge .$) means 11; pr(.,30) calculates $Pr(ll < y_j < 30)$; pr(lb,30) calculates Pr($ll < y_i < 30$) in observations for which $lb \ge .$ and calculates $Pr(lb < y_i < 30)$ elsewhere.

b missing $(b \ge .)$ means ∞ ; pr(20,.) calculates $\Pr(\infty > y_j > 20)$; pr(20,ub) calculates $Pr(\infty > y_i > 20)$ in observations for which $ub \geq 1$, and calculates

- e(a,b) calculates $E(y_j | a < y_j < b)$, the expected value of $y_j | \mathbf{x}_j$ conditional on $y_j | \mathbf{x}_j$ being in the interval (a, b), meaning that $y_i | \mathbf{x}_j$ is bounded. a and b are specified as they are for pr().
- equation(eqno) specifies the equation for which predictions are to be made for the xb and stdp options. equation() should contain either one equation name or one of #1, #2, ... with #1 meaning the first equation, #2 meaning the second equation, etc.

If you do not specify equation(), the results are the same as if you specified equation(# 1).

scores calculates the equation-level score variables. If you specify one new variable, the scores for the latent-variable equation are computed. If you specify a variable list, the scores for each equation are calculated. The following scores may be obtained:

the first new variable will contain $\partial \ln L/\partial(\mathbf{x}_i\beta)$, the second new variable will contain $\partial \ln L/\partial (\mathbf{z}_i \boldsymbol{\gamma}_{ll})$, the third new variable will contain $\partial \ln L/\partial (\mathbf{z}_i \boldsymbol{\gamma}_{ul})$, the fourth new variable will contain $\partial \ln L/\partial(\sigma)$, the fifth new variable will contain $\partial \ln L/\partial(\sigma_{ll})$, and

the sixth new variable will contain $\partial \ln L/\partial (\sigma_{ul})$.

 $\Pr(ub > y_i > 20)$ elsewhere. For churdle linear, ul is ∞ .

margins

Description for margins

margins estimates margins of response for conditional expectations, linear predictions, and probabilities.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...) [ options ]
```

Description		
conditional expectation of depvar; the default		
$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\};$ for churdle exponential b is .		
linear prediction		
$\Pr(a < y_j < b)$; for churdle exponential b is .		
$E(y_j a < y_j < b)$; for churdle exponential b is .		
not allowed with margins		
not allowed with margins		

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

stata.com

Example 1: Predictions for depvar

Below, we use the parameters estimated in example 1 of [R] **churdle** to calculate the average hours exercised given the covariates.

```
. use https://www.stata-press.com/data/r18/fitness
(Fictional fitness data)
. churdle linear hours age i.smoke distance i.single,
> select(commute whours age) ll(0)
  (output omitted)
. predict hourshat
(statistic ystar assumed)
```

Number of obs = 19,831

We might also be interested in estimating the average number of hours exercised given that an individual exercises. Below we estimate this quantity and compare it with the predicted and true values of the dependent variable for all the observations.

- . predict exercises, e(0,.)
- . summarize hours hourshat exercises

Variable	0bs	Mean	Std. dev.	Min	Max
hours	19,831	.8800172	1.051221	0	5.308835
hourshat	19,831	.8786302	.4915214	.0754708	1.904694
exercises	19,831	1.580729	.3998335	.5630298	2.079012

As expected, we observe that the sample-average predictions are higher for those who exercise.

Example 2: Marginal effects

Suppose we want to study whether single individuals exercise more on average than married individuals. Below, we use margins to estimate the average effect of being single on hours spent exercising in the population.

. margins, dydx(1.single)

Average marginal effects

Model VCE: OIM

Expression: Conditional mean estimates of dependent variable, predict()

dy/dx wrt: 1.single

	dy/dx	Delta-method std. err.	z	P> z	[95% conf.	interval]
single Single	.3858462	.0091398	42.22	0.000	.3679324	.4037599

Note: dy/dx for factor levels is the discrete change from the base level.

The average effect of moving each individual from not single to single is an increase in exercise of 0.39 hours, or about 23 minutes.

4

The statistics pr(a,b), e(a,b), and ystar(a,b) produce counterfactual predictions.

These statistics predict what would be observed if the limits $\ell\ell$ and $u\ell$ were the specified a and b and the estimated parameters did not change, even though the parameters of the model were estimated using the limits $\ell\ell$ and $u\ell$.

For example, suppose we model contributions to a retirement plan in a world where the government requires a minimum contribution of 2% so $\ell\ell=2$. After estimating the model parameters, we could predict the average contribution, given the covariates, when the government raises the minimum contribution to 3% with the statistic ystar(3,.).

Methods and formulas

Let $\ell\ell$ refer to the lower limit and $u\ell$ to the upper limit. Also let the probabilities of being at these limits be given by

$$Pr(y_i = \ell \ell | \mathbf{z}_i) = \Phi(\ell \ell - \mathbf{z}_i' \gamma_{\ell \ell})$$
$$Pr(y_i = u \ell | \mathbf{z}_i) = \Phi(\mathbf{z}_i' \gamma_{u\ell} - u \ell)$$

where \mathbf{z}_i are the covariates of the selection model for individual i, which may be distinct from the covariates \mathbf{x}_i for the outcome model; $\boldsymbol{\Phi}$ is the standard normal cumulative distribution function; $\gamma_{\ell\ell}$ is the parameter vector for the lower-limit selection model; and $\gamma_{u\ell}$ is the parameter vector for the upper-limit selection model.

We will limit the exposition below to the case with a lower and an upper limit.

In churdle linear, ystar is equivalent to $E(y_i|\mathbf{x}_i)$ and is given by

$$E\left(y_{i}|\mathbf{x}_{i},\mathbf{z}_{i}\right) = \Phi\left(\mathbf{z}_{i}'\boldsymbol{\gamma}_{u\ell} - u\ell\right)u\ell + \Phi\left(\ell\ell - \mathbf{z}_{i}'\boldsymbol{\gamma}_{\ell\ell}\right)\ell\ell$$

$$+ \left\{\Phi\left(u\ell - \mathbf{z}_{i}'\boldsymbol{\gamma}\right) - \Phi\left(\ell\ell - \mathbf{z}_{i}'\boldsymbol{\gamma}\right)\right\} \left\{\mathbf{x}_{i}'\boldsymbol{\beta} + \sigma\frac{\phi\left(\frac{\ell\ell - \mathbf{x}_{i}'\boldsymbol{\beta}}{\sigma}\right) - \phi\left(\frac{u\ell - \mathbf{x}_{i}'\boldsymbol{\beta}}{\sigma}\right)}{\Phi\left(\frac{u\ell - \mathbf{x}_{i}'\boldsymbol{\beta}}{\sigma}\right) - \Phi\left(\frac{\ell\ell - \mathbf{x}_{i}'\boldsymbol{\beta}}{\sigma}\right)}\right\}$$

pr(a,b) is given by

$$\Pr\left(a < y_i < b | \mathbf{z}_i\right) = \Phi\left(b - \mathbf{z}_i'\boldsymbol{\beta}\right) - \Phi\left(a - \mathbf{z}_i'\boldsymbol{\beta}\right)$$

e(a,b) is given by

$$E\left(a < y_i < b | \mathbf{x}_i\right) = \mathbf{x}_i' \boldsymbol{\beta} + \sigma \frac{\phi\left(\frac{a - \mathbf{x}_i' \boldsymbol{\beta}}{\sigma}\right) - \phi\left(\frac{b - \mathbf{x}_i' \boldsymbol{\beta}}{\sigma}\right)}{\Phi\left(\frac{b - \mathbf{x}_i' \boldsymbol{\beta}}{\sigma}\right) - \Phi\left(\frac{a - \mathbf{x}_i' \boldsymbol{\beta}}{\sigma}\right)}$$

and ystar(a,b) is given by

$$E(y^*) = \Phi(\mathbf{z}_i'\gamma_{u\ell} - b) b + \Phi(a - \mathbf{z}_i'\gamma_{\ell\ell}) a$$
$$+ \Pr(a < y_i < b|\mathbf{x}_i) E(a < y_i < b|\mathbf{x}_i)$$

For churdle exponential, ystar is equivalent to

$$\begin{split} E\left(y_{i}|\mathbf{x}_{i}\right) &= \Phi\left(\ell\ell - \mathbf{z}_{i}^{\prime}\boldsymbol{\gamma}_{\ell\ell}\right)\ell\ell \\ &+ \left\{1 - \Phi\left(\ell\ell - \mathbf{z}_{i}^{\prime}\boldsymbol{\gamma}\right)\right\} \, \exp\left(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta} + \sigma^{2}/2\right) \left[\frac{1 - \Phi\left\{\frac{\ln\left(\ell\ell\right) - \mathbf{x}_{i}^{\prime}\boldsymbol{\beta}}{\sigma} - \sigma\right\}}{1 - \Phi\left\{\frac{\ln\left(\ell\ell\right) - \mathbf{x}_{i}^{\prime}\boldsymbol{\beta}}{\sigma}\right\}}\right] \end{split}$$

p(a,.) is given by

$$\Pr\left(a < y_i | \mathbf{x}_i\right) = 1 - \Phi\left(a - \mathbf{z}_i' \gamma_{\ell\ell}\right)$$

e(a, .) is given by

$$E\left(a < y_i | \mathbf{x}_i\right) = \exp\left(\mathbf{x}_i'\boldsymbol{\beta} + \sigma^2/2\right) \left[\frac{1 - \Phi\left\{\frac{\ln\left(a\right) - \mathbf{x}_i'\boldsymbol{\beta}}{\sigma} - \sigma\right\}}{1 - \Phi\left\{\frac{\ln\left(a\right) - \mathbf{x}_i'\boldsymbol{\beta}}{\sigma}\right\}} \right]$$

and ystar(a, .) is given by

$$E(y^*) = a\Phi(a - \mathbf{z}_i'\gamma_{\ell\ell}) + \Pr(a < y_i|\mathbf{x}_i) E(a < y_i|\mathbf{x}_i)$$

Also see

- [R] churdle Cragg hurdle regression
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.