ameans - Arithmetic, geometric, and harmonic means

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	Methods and formulas
Acknowledgments	References	Also see	

Description

ameans computes the arithmetic, geometric, and harmonic means, with their corresponding confidence intervals, for each variable in varlist or for all the variables in the data if varlist is not specified. gmeans and hmeans are synonyms for ameans.

Quick start

Arithmetic, geometric, and harmonic means of variable v 1 ameans v1

Same as above, but for variables v1, v2, and v3
ameans v1 v2 v3
Means for all variables in the dataset
ameans
Add n to each observation before calculating means
ameans v1, add (n)
Add n to each observation only for variables with at least 1 nonpositive value ameans v1 v2 v3, add(n) only

Request 99\% confidence intervals
ameans v1, level(99)

Menu

Statistics $>$ Summaries, tables, and tests $>$ Summary and descriptive statistics $>$ Arith./geometric/harmonic means

Syntax

```
ameans [varlist] [if] [in] [weight] [, options]
```

options
Description
Main
add (\#) add \# to each variable in varlist
only
level(\#)
add \# only to variables with nonpositive values
set confidence level; default is level (95)
by and collect are allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Options

\qquad Main
add(\#) adds the value \# to each variable in varlist before computing the means and confidence intervals. This option is useful when analyzing variables with nonpositive values.
only modifies the action of the add (\#) option so that it adds \# only to variables with at least one nonpositive value.
level(\#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

> Example 1

We have a dataset containing 8 observations on a variable named x . The eight values are 5, 4, $-4,-5,0,0$, missing, and 7 .

. ameans x					
Variable	Type	Obs	Mean	[95\% conf. interval]	
x	Arithmetic	7	1	-3.204405	5.204405
	Geometric	3	5.192494	2.57899	10.45448
	Harmonic	3	5.060241	3.023008	15.5179

ameans $\mathrm{x}, \operatorname{add}(5)$ Variable\quad Type		Obs	Mean	[95\% conf. interval]	
x	Arithmetic	7	6	1.795595	$10.2044 *$
	Geometric	6	5.477226	2.1096	14.22071^{*}
	Harmonic	6	3.540984	.	.$*$

[^0]The number of observations displayed for the arithmetic mean is the number of nonmissing observations. The number of observations displayed for the geometric and harmonic means is the number of nonmissing, positive observations. Specifying the add (5) option produces 3 more positive observations. The confidence interval for the harmonic mean is not reported; see Methods and formulas below.

Video example

Descriptive statistics in Stata

Stored results

ameans stores the following in r() :
Scalars

r (N)	number of nonmissing observations; used for arithmetic mean
r(N_pos)	number of nonmissing positive observations; used for geometric and harmonic means
r (mean)	arithmetic mean
r(lb)	lower bound of confidence interval for arithmetic mean
r (ub)	upper bound of confidence interval for arithmetic mean
r (Var)	variance of untransformed data
r (mean_g)	geometric mean
r(lb_g)	lower bound of confidence interval for geometric mean
r (ub_g)	upper bound of confidence interval for geometric mean
r (Var_g)	variance of $\ln x_{i}$
r (mean_h)	harmonic mean
r(lb_h)	lower bound of confidence interval for harmonic mean
r (ub_h)	upper bound of confidence interval for harmonic mean
r (Var_h)	variance of $1 / x_{i}$
r(level)	confidence level of confidence interval

Methods and formulas

See Armitage, Berry, and Matthews (2002) or Snedecor and Cochran (1989). For a history of the concept of the mean, see Plackett (1958).

When restricted to the same set of values (that is, to positive values), the arithmetic mean (\bar{x}) is greater than or equal to the geometric mean, which in turn is greater than or equal to the harmonic mean. Equality holds only if all values within a sample are equal to a positive constant.

The arithmetic mean and its confidence interval are identical to those provided by ci; see $[\mathrm{R}]$ ci.
To compute the geometric mean, ameans first creates $u_{j}=\ln x_{j}$ for all positive x_{j}. The arithmetic mean of the u_{j} and its confidence interval are then computed as in ci. Let \bar{u} be the resulting mean, and let $[L, U]$ be the corresponding confidence interval. The geometric mean is then $\exp (\bar{u})$, and its confidence interval is $[\exp (L), \exp (U)]$.

The same procedure is followed for the harmonic mean, except that then $u_{j}=1 / x_{j}$. The harmonic mean is then $1 / \bar{u}$, and its confidence interval is $[1 / U, 1 / L]$ if L is greater than zero. If L is not greater than zero, this confidence interval is not defined, and missing values are reported.

When weights are specified, ameans applies the weights to the transformed values, $u_{j}=\ln x_{j}$ and $u_{j}=1 / x_{j}$, respectively, when computing the geometric and harmonic means. For details on how the weights are used to compute the mean and variance of the u_{j}, see [R] summarize. Without weights, the formula for the geometric mean reduces to

$$
\exp \left\{\frac{1}{n} \sum_{j} \ln \left(x_{j}\right)\right\}
$$

Without weights, the formula for the harmonic mean is

$$
\frac{n}{\sum_{j} \frac{1}{x_{j}}}
$$

Acknowledgments

This improved version of ameans is based on the gmci command (Carlin, Vidmar, and Ramalheira 1998) and was written by John Carlin of the Murdoch Children's Research Institute and the University of Melbourne; Suzanna Vidmar of the University of Melbourne; and Carlos Ramalheira of Coimbra University Hospital, Portugal.

References

Armitage, P., G. Berry, and J. N. S. Matthews. 2002. Statistical Methods in Medical Research. 4th ed. Oxford: Blackwell.

Carlin, J. B., S. Vidmar, and C. Ramalheira. 1998. sg75: Geometric means and confidence intervals. Stata Technical Bulletin 41: 23-25. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 197-199. College Station, TX: Stata Press.

Keynes, J. M. 1911. The principal averages and the laws of error which lead to them. Journal of the Royal Statistical Society 74: 322-331. https://doi.org/10.2307/2340444.
Plackett, R. L. 1958. Studies in the history of probability and statistics: VII. The principle of the arithmetic mean. Biometrika 45: 130-135. https://doi.org/10.2307/2333051.

Snedecor, G. W., and W. G. Cochran. 1989. Statistical Methods. 8th ed. Ames, IA: Iowa State University Press.
Stigler, S. M. 1985. Arithmetric means. In Vol. 1 of Encyclopedia of Statistical Sciences, ed. S. Kotz and N. L. Johnson, 126-129. New York: Wiley.
Vogel, R. M. 2022. The geometric mean? Communications in Statistics—Theory and Methods 51: 82-94. https://doi.org/10.1080/03610926.2020.1743313.

Also see

$[\mathrm{R}]$ ci - Confidence intervals for means, proportions, and variances
[R] mean - Estimate means
[R] summarize - Summary statistics
[SVY] svy estimation - Estimation commands for survey data
Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

[^0]: * 5 was added to the variables prior to calculating the results.

 Note: Missing values in confidence intervals for harmonic mean indicate that confidence interval is undefined for corresponding variables.

