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Description
demandsys fits demand systems, sets of equations derived from economic theory that describe

consumers’ purchases of various goods or services. demandsys allows you to fit eight different
demand systems, including the Cobb–Douglas system, the almost ideal demand system (AIDS) of
Deaton and Muellbauer (1980b), the translog indirect utility demand system of Christensen, Jorgenson,
and Lau (1975), and variants of the latter two. You can also include demographic variables that affect
a consumer’s or household’s demands.

Quick start
Fit an AIDS demand system with four goods with expenditure shares w1, w2, w3, and w4; prices, p1,

p2, p3, and p4; and total expenditure, totexp
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp)

Same as above, reporting Marshallian (uncompensated) elasticities rather than coefficients
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp) elasticities(uncompensated) ///
nocoeftable

Same as above, labeling goods in output for easier interpretation
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp) elasticities(uncompensated) ///
nocoeftable labels("apples bananas carrots dates")

Fit a quadratic AIDS model with four goods, controlling for x1 and x2 using demographic translation
demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp) demographics(x1 x2)

Same as above, but use demographic scaling rather than translating
demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp) demographics(x1 x2, scaling)

Menu
Statistics > Linear models and related > Multiple-equation models > Demand system

1

http://stata.com
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Syntax

demandsys model varlists
[

if
] [

in
] [

weight
]
, prices(varlistp)

expenditure(varname)
[

options
]

model Description

cdouglas Cobb–Douglas demand system
les linear expenditure system
translog basic translog demand system
gtranslog generalized translog demand system
aids almost ideal demand system (AIDS)
gaids generalized AIDS
quaids quadratic AIDS

gquaids generalized quadratic AIDS

varlists indicates the list of G variables containing the expenditure shares of the G goods in the
model.

options Description

Main
∗prices(varlistp) specify the variables containing prices
∗expenditure(varname) specify the variable containing total expenditure
demographics(varlistd

[
, scaling

]
) specify other variables affecting a consumer’s demand

for the goods; use demographic scaling instead of
translating

piconstant(#) specify constant term in transcendental logarithmic
price index

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar,
bootstrap, or jackknife

Reporting

elasticities(e type) report elasticities; e type may be expenditure,
compensated, or uncompensated

labels(string) specify labels for goods
level(#) set confidence level; default is level(95)

noheader suppress the summary header at the top of the output
nocoeftable do not display the table of estimated coefficients
display options control columns and column formats and line width

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u12.pdf#u12.4Strings
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∗prices() and expenditure() are required.
collect is allowed; see [U] 11.1.10 Prefix commands.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Main �

prices(varlistp) specifies a list of G variables corresponding to the prices of the G goods faced
by each consumer. The number of variables specified here must match the number specified in
varlists, and the price variables must be specified in the same order as the share variables. All
the price variables must be strictly positive for all the demand systems implemented. prices()
is required.

expenditure(varname) specifies the variable corresponding to the total expenditure on all goods
within the system by each consumer. This variable must be strictly positive. expenditure() is
required.

demographics(varlistd
[
, scaling

]
) specifies one or more demographic variables that affect each

consumer’s demand for the goods in the system. Suboption scaling, available only with models
aids and quaids, requests that demographics be incorporated via demographic scaling rather than
demographic translation, the default.

piconstant(#) specifies the value of the constant term in the transcendental logarithmic price index;
by default, this is set to the logarithm of the minimum expenditure observed in the sample. This
option is relevant only for models aids and quaids.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit
using Gauss–Newton regression.

� � �
Reporting �

elasticities(e type) requests that elasticities be reported instead of, or in addition to, the param-
eter estimates. e type may be expenditure, compensated, or uncompensated. expenditure
computes demand elasticity to changes in expenditure. compensated computes demand elasticity
to changes in prices, ignoring income effects. These elasticities are also known as Hicksian price
elasticities. uncompensated computes demand elasticity to changes in prices. These elasticities
are also known as Marshallian price elasticities. The elasticities are computed at the estimation
sample means of the prices, expenditures, and any demographic variables specified. For more
flexibility in obtaining elasticities, use the postestimation command estat elasticities.

labels(string) specifies a set of names with which the goods are to be labeled. By default, if
you specify a four-good demand system, then the goods will be labeled generically: “Good 1”,
“Good 2”, “Good 3”, and “Good 4”.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
https://www.stata.com/manuals/u12.pdf#u12.4Strings
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If you specify labels("shelter fuel food other"), then the four goods will be labeled
“shelter”, “fuel”, “food”, and “other” in the output. If you specify a demand system with G goods,
then you must supply G labels separated by spaces.

level(#); see [R] Estimation options.

noheader requests that the header summarizing the model, estimation sample, and other statistics
not be shown in the output.

nocoeftable requests that the table containing the parameter estimates, their standard errors, and
so on not be displayed. Typically, you would use this option if you specify the elasticities()
option.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nol-
stretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace, eps(#), ifgnlsiterate(#), ifgnlseps(#),

and delta(#).

iterate(#) specifies the maximum number of iterations to use for nonlinear least squares at
each round of feasible generalized nonlinear least-squares (FGNLS) estimation. The default is
the number set using set maxiter, which is 300 by default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by
default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the iteration log should include the current parameter vector.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual
sum of squares. The default is eps(1e-5) (0.00001). eps() also specifies the convergence
criterion for successive parameter estimates between rounds of iterative FGNLS.

ifgnlsiterate(#) specifies the maximum number of FGNLS iterations to perform. The default
is the number set using set maxiter, which is 300 by default.

ifgnlseps(#) specifies the convergence criterion for successive estimates of the error covariance
matrix during iterative FGNLS estimation. The default is ifgnlseps(1e-10).

delta(#) specifies the relative change in a parameter, δ, to be used in computing the numeric
derivatives. The derivative for parameter betai is computed as

{fi (xi, β1, β2, . . . , βi + d, βi+1, . . .)− fi (xi, β1, β2, . . . , βi, βi+1, . . .)} /d

where d = δ(|βi|+ δ). The default is delta(4e-7).

The following option is available with demandsys but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Some notation
Cobb–Douglas
Linear expenditure system (LES)
Translog

Basic translog
Generalized translog

AIDS
QUAIDS
Controlling for demographic factors
Demographic translation
Demographic scaling
Epilogue

Introduction

demandsys fits demand systems, sets of equations derived from economic theory that describe
consumers’ purchases of various goods or services. Typically, you will have a large cross-sectional
survey containing consumers’ data on their expenditures on various goods and services along with
the prices paid for them. We often refer to the items as “goods” for brevity, but of course some of
the items may be services. Whether they are physical goods or intangible services, in the context of
utility-maximizing consumers, they are both goods in the sense that “more is better”. We also use
the term “purchase” somewhat loosely; in some cases, what we are interested in is not the actual
purchase of goods but rather their consumption over a fixed time period.

To fit a demand system, you must first decide on what is in the consumption basket or bundle and
the set of goods whose demands you wish to model. Using the parameters from the model, you may
then obtain the elasticities—the effects of changes in prices or changes in expenditure on demand of
goods. You may also perform welfare analysis by contrasting changes in demand or utility that occur
at different price or expenditure levels. We assume that you have decided which consumption bundle
to model already or else that you have several alternative baskets to model and compare.

The left-hand-side variables you specify with demandsys are expenditure shares, the shares of
total expenditure spent on goods or services. Given pg (the price of good g), qg (the quantity of good
g purchased), and m (the consumer’s total expenditure on all goods within the demand system), the
expenditure share for good g is defined as

wg =
pg qg
m

demandsys requires that you have the prices of all the goods and that you have the total expenditure
across all the goods. demandsys does not need the quantities of the goods purchased, though you
may need them to calculate the expenditure shares.

Consumer theory in microeconomics presents demand models in terms of quantities. In demand
system analysis, we model expenditure shares, not quantities. By our definition of total expenditure,
0 ≤ wg ≤ 1 for all g, and

∑
g wg = 1. For all but the simplest utility or cost functions, the algebra

to obtain expenditure shares is arguably easier than that to obtain quantities. demandsys checks your
expenditure shares for all goods and will exit with an error message if an expenditure share is found
outside that range or if the sum is not equal to one (allowing for small rounding errors).

http://stata.com
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You may also specify additional variables that may affect a consumer’s purchase decisions. These
are often demographic variables, such as the number of children and adults in a household, or a set of
indicator variables to denote the region of a country in which a consumer is located. If you have data
that were collected over the course of different months or years, you may wish to include indicators to
control for the time at which the consumer’s purchases were observed. We call all of these variables
demographics, even if some of these variables are not really demographic characteristics.

Based on the theoretical considerations in Lewbel (2001), we strongly encourage you to include
demographic variables in your model. He shows that econometrically estimated demand functions
will not satisfy rationality conditions unless other variables that affect demand and are correlated
with expenditures are included. Conversely, if we include all such variables in our model, then the
estimated demands will satisfy rationality even if preferences vary among households. On the other
hand, you should also bear in mind that including too many demographic variables can greatly increase
the number of parameters in your model, especially if your demand system includes many goods.

demandsys offers just a small sampling of demand systems that have been proposed in the
literature. As a practical matter, which one should you use? We have included the Cobb–Douglas
model mainly for pedagogical purposes because most students are familiar with Cobb–Douglas utility,
though soon thereafter they learn about its severe restrictions on consumer behavior. Stone’s (1954)
linear expenditure system (LES) is historically important as an early demand system but also places
somewhat strong restrictions on consumer behavior. Christensen, Jorgenson, and Lau’s (1975) translog
model relaxes some of the LES’s restrictions. It is not as widely used as some of the newer models,
though a very similar translog production function those authors proposed continues to see extensive
use. Shortly after the translog model arrived, Deaton and Muellbauer (1980b) proposed their more
flexible AIDS, which has been a workhorse model of demand system analysis ever since its arrival.
Banks, Blundell, and Lewbel (1997) provided a quadratic extension to AIDS that is also popular.

Banks, Blundell, and Lewbel (1997) suggest using QUAIDS because of its flexibility. Moreover,
QUAIDS satisfies certain theoretical properties developed in Gorman (1981); and it allows goods to
be either luxuries or necessities depending on a consumer’s income, which Banks, Blundell, and
Lewbel (1997) show to be important in the data they consider.

With the AIDS and QUAIDS models, you can include demographics via two different methods:
demographic translation and demographic scaling; see Demographic translation and Demographic
scaling. If you believe that subsistence or committed quantities are appropriate for the goods you are
modeling, you can use what we call the generalized QUAIDS model. If you do that, you should check
to see that the subsistence quantity interpretation holds; we do that in example 2 of [R] demandsys
postestimation. You can also do a simple likelihood-ratio test to see whether the quadratic terms of
these QUAIDS models increase their explanatory power over Deaton and Muellbauer’s AIDS and its
generalized variant; see example 5 below.

Throughout the rest of the discussion, we assume that you are familiar with a few basic microe-
conomic concepts, including utility maximization, the expenditure function, and the indirect utility
function. The presentations in standard texts like Varian (1992, chap. 7–10) and Mas-Colell, Whinston,
and Green (1995, chap. 3) provide good introductions to these concepts. The classic monograph by
Deaton and Muellbauer (1980a) and the book by Pollak and Wales (1992) describe demand system
analysis in much greater detail than space permits us here. More recent survey papers include Holt
and Goodwin (2009) and Barnett and Serletis (2008). Fisher, Fleissig, and Serletis (2001) compare
many flexible functional forms for demand system analysis, including several that are implemented
by demandsys.

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimationRemarksandexamplesex2_demandsysp
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Some notation
It will be useful to establish at the outset some standard notation we will use throughout this

discussion. We use subscript i = 1, . . . , N to index observations, g = 1, . . . , G to index goods, and
d = 1, . . . , D to index demographic variables. In formulas where we must use double summations
across goods or else have used subscript g elsewhere, we also use h = 1, . . . , G and j = 1, . . . , G to
index goods. When no confusion could arise, we omit the observation subscript to reduce the number
of subscripts.

Let wg be the expenditure share for good g defined as wg ≡ (pg qg)/m, where pg is the price
of good g, qg is the quantity of good g consumed, and m denotes total expenditure on all the goods
in the system being modeled. We use the notation p to refer to the G-length vector of all G prices.
When we refer to wg , we are referring to the observed expenditure share for good g for consumer i.
When we refer to, say, wg(p,m;α,β), we are referring to an expenditure-share equation or function
for good g that depends on the prices of all the goods and total expenditure as well as parameter
vectors α and β. We include the parameter vectors and matrices in the arguments for expenditure
shares as well as some other functions to emphasize that they are estimated and will appear in the
output from demandsys and that statistics available via predict or estat elasticities after
estimation depend on those parameters.

The observed wg is assumed to be related to the expenditure-share function wg(p,m;α,β) as

wg = wg(p,m;α,β) + εg

where εg is a zero-mean error term that we discuss in more detail in Methods and formulas .

Cobb–Douglas

Although widely used in many economic models, the Cobb–Douglas utility function is arguably too
simple for serious demand system analysis because of its severe restrictions on the expenditure-share
equations and elasticities. For instance, it restricts expenditure elasticities to be identically equal to 1
for all goods. Nevertheless, we include it because it serves as a good starting point for our discussion
and allows us to present various aspects of demandsys. For three goods, consumers maximize their
Cobb–Douglas utility function subject to the constraint that total expenditure does not exceed the
allocated budget,

maxq1,q2,q3 q
α1
1 qα2

2 q
(1−α1−α2)
3

subject to p1q1 + p2q2 + p3q3 ≤ m
where, without loss of generality, we have made the sum of the exponents of the Cobb–Douglas
utility function sum to 1. It is easy to show that the optimal quantities q∗1 , q∗2 , and q∗3 are

q∗1 = α1
m

p1
q∗2 = α2

m

p2
q∗3 = (1− α1 − α2)

m

p3

To obtain the expenditure-share function of, say, good 1, we have

w1(p,m;α) =
p1 q1
m

= α1
m

p1

p1
m

= α1

and likewise for goods 2 and 3. Notice that the expenditure-share function for good g is simply its
coefficient αg in the Cobb–Douglas utility function, or, equivalently, the coefficients in the Cobb–
Douglas utility function are simply the shares of total expenditure allocated to each good. Most
importantly, the expenditure shares for the Cobb–Douglas model are not functions of prices, income,
or any other variables.
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We made the sum of the exponents in the Cobb–Douglas utility function sum to 1, and it is clear
that w1 + w2 + w3 = 1. Without the constraint on the sum, we would have to carry around the
divisor α1 +α2 +α3 in our expenditure-share equations, but we would gain absolutely no additional
insight. Moreover, with the constraint we need estimate only two parameters rather than three.

More generally, for a Cobb–Douglas utility function of the form

u(q;α) =

G∏
g=1

qαg
g with

G∑
g=1

αg = 1

the expenditure-share function for the gth good is simply wg(p,m;α) = αg .

Example 1

We first describe the dataset we will use in this example and all others in this manual entry:

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)

. describe

Contains data from https://www.stata-press.com/data/r18/food_consumption.dta
Observations: 4,160 Food consumption

Variables: 13 17 Jul 2022 16:03
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

w_dairy float %10.6f Expenditure share on dairy
w_proteins float %10.6f Expenditure share on meats and

proteins
w_fruitveg float %10.6f Expenditure share on fruits and

vegetables
w_flours float %10.6f Expenditure share on flours,

breads, pasta, and cereals
w_misc float %10.6f Expenditure share on misc. food

items
p_dairy float %10.6f Price of dairy
p_proteins float %10.6f Price of meats and proteins
p_fruitveg float %10.6f Price of fruits and vegetables
p_flours float %10.6f Price of flours, breads, pasta,

and cereals
p_misc float %10.6f Price of misc. food items
expfd float %10.6f Total expenditure on all food

categories
n_adults byte %8.0g # adults in household
n_kids byte %8.0g # kids in household

Sorted by:

The observation level of this dataset is the household, and we have data on 4,160 households. The
data include five categories of food: dairy products; proteins, including meats and fish; fruits and
vegetables; flour-based products, including breads, pastas, and cereals; and a catchall category. For
each of the five categories, we have the expenditure shares and prices, and we have the household’s
total expenditure on all five categories in the week that the household was surveyed. We also have
demographic data for the household, including the numbers of children and adults.
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Although we constructed the expenditure shares ourselves and know they sum to one, it is a good
idea to verify that you have created your expenditure-share variables properly:

. egen wsum = rowtotal(w_dairy w_proteins w_fruitveg w_flours w_misc)

. summarize wsum

Variable Obs Mean Std. dev. Min Max

wsum 4,160 1 4.40e-08 .9999999 1

demandsys will check that for you and exit with an error message if it is not the case, but doing so
during your data management tasks may make debugging easier. demandsys will also check that all
your price variables and expenditure variable are strictly positive, though again you might want to
check those facts earlier in your data pipeline.

With a dataset in hand, we are ready to fit our first Cobb–Douglas demand system.

. demandsys cdouglas w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc) expenditure(expfd)

Calculating NLS estimates:
Iteration 0: Residual SS = 180.2506
Iteration 1: Residual SS = 180.2506

Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 16640

FGNLS iteration 2:
Iteration 0: Scaled RSS = 16640
Parameter change = 0.00e+00
Covariance matrix change = 0.00e+00

Cobb--Douglas model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Uncentered R2 of model for
Good 1 = 0.7519
Good 2 = 0.8851
Good 3 = 0.8329
Good 4 = 0.7467
Good 5 = 0.6836

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1505844 .0013411 112.29 0.000 .147956 .1532129
2 .3986526 .0022265 179.05 0.000 .3942887 .4030166
3 .2406533 .0016711 144.01 0.000 .237378 .2439286
4 .1031129 .0009312 110.73 0.000 .1012877 .104938

Note: alpha estimates are expenditure shares.

Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .1069968 .0011286 94.80 0.000 .1047847 .1092088

Note: alpha estimates sum to 1.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
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We specified the command name, demandsys, followed by the model we wish to fit, cdouglas. We
then specified the five expenditure-share variables, w dairy through w misc. The price variables,
p dairy through p misc, go into the prices() option, and the expenditure variable, expfd, goes
into the expenditure() option. demandsys uses a nonlinear multiple-equation estimator, so the top
of the output includes an iteration log showing the model’s convergence. In fact, the Cobb–Douglas
model is linear, but that is the only model fit by demandsys that is. Stata uses the same nonlinear
estimator for cdouglas as we use for the other demand systems. The header of the output includes
R2 values to get some idea of how well the model fits the data.

The table of coefficients is a bit different from most other estimators in Stata, which report
coefficients organized by equations. The Cobb–Douglas model is unique in that each equation has its
own parameter. However, that is not the case for any other demand system that demandsys fits. For
most demand systems, many of the parameters appear in multiple equations, and there is no way to
link parameters and equations. Hence, we cannot provide a coefficient table organized by equations
as other multiple-equation estimators such as sureg provide. Instead, demandsys organizes estimates
by parameter type.

We mentioned having a five-good demand system, so why do we see only four estimated parameters
in the main output table? Recall that we used the normalization that the sum of the parameters in the
Cobb–Douglas utility function is one. The upshot is that we really have only four free parameters
because the fifth parameter must equal one minus the sum of the other four parameters. We provide
the estimate of the fifth parameter in a separate table. It is computed separately using the parameter
estimates of our fitted demand system and their standard errors. Given how the fifth parameter was
computed, it does not share a covariance matrix with the other parameters and cannot be used for
testing. We provide it here for reference.

demandsys shows only unconstrained parameters in the main estimation output because, with many
goods and more complicated models, the output becomes long. Moreover, the estimated parameters
themselves are of less interest than elasticities and other statistics derived from the fitted model.

Technical note

In the header of the output in the previous example, we see that the equation-level R2 values are
labeled as uncentered. Recall that the standard R2 in regression analysis measures the ability of the
model to predict the regressand compared with a model that contains just a constant term. For the
Cobb–Douglas demand system, the expenditure shares are simply constant terms to be estimated.
Hence, the traditional R2 is by definition zero. We therefore report the uncentered R2, which is
an alternative that measures the model’s explanatory power as a fraction of the sum of squares of
an equation’s left-hand-side variable. A higher uncentered R2 is presumably better than a lower
uncentered R2, but you cannot compare the uncentered R2 of a Cobb–Douglas share equation with
the centered R2 of a share equation from a different demand system.

The command estat elasticities, which is available after demandsys, allows you to calculate
expenditure and price elasticities after fitting your demand system, and estat elasticities provides
options to specify how those elasticities are calculated and for which observations. The full syntax
for that command is listed in [R] demandsys postestimation, but the basic command is easy to pick
up as we work through examples below.

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Here we use estat elasticities to obtain the expenditure elasticities for the estimation sample.

. estat elasticities, expenditure

Expenditure elasticities Number of obs = 4,160

Expenditure Elasticity

Good
1 1
2 1
3 1
4 1
5 1

Note: No standard errors are displayed because all elasticities are
identically equal to one.

The expenditure elasticities for all five goods are identically equal to one, and so the standard errors,
test statistics, and confidence interval are not displayed because there is no sampling variance. The
Cobb–Douglas function is an example of a utility function with “homothetic preferences”, meaning
that the ratio of two goods demanded by a consumer with such preferences depends only on the goods’
relative prices and not on income. Homothetic preferences also imply that, regardless of changes in
income, the shares consumed of each good remain the same; the expansion path of consumption is
linear in income. The Cobb–Douglas case is a particularly extreme example, where the expenditure
elasticities are one, the uncompensated own-price elasticities are minus one, and uncompensated
cross-price elasticities are zero, which you can verify by typing

estat elasticities, uncompensated

Particularly with more complex demand systems, the coefficients themselves can be more difficult
to interpret. Therefore, demandsys allows you to request that expenditure, uncompensated price, or
compensated price elasticities be displayed in addition to, or in place of, the table of estimated coeffi-
cients. The elasticities reported directly by demandsys are calculated at the estimation sample means
of prices, expenditures, and any demographics that you specify. To obtain, say, the uncompensated
price elasticities instead of the coefficient table from a Cobb–Douglas demand system, you would
type

demandsys cdouglas . . ., prices(. . .) expenditure(. . .) ///
elasticities(uncompensated) nocoeftable

estat elasticities gives you much more flexibility in terms of the sample used, and you can
even specify particular prices or expenditures at which you want the elasticities to be calculated.
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Linear expenditure system (LES)

Nobel laureate Sir Richard Stone’s estimation of the LES, developed based on theory by Nobel
laureates Paul Samuelson and Lawrence Klein, together with Herman Rubin, represents the genesis of
flexible demand system estimation (Stone 1954). LES provides for more flexible consumption patterns
than the Cobb–Douglas model. The LES begins with the utility function

u(q;β,µ) =
∏
g

(qg − µg)βg

where µg is the gth element of G × 1 vector µ, which is to be estimated. This utility function
results from translating or shifting the origin of the Cobb–Douglas utility function; utility does not
accrue from good g unless its consumption exceeds an amount µg . That parameter is known as a
subsistence or committed quantity that a consumer must purchase for survival. βg is the gth element of
G×1 vector β. βg measures the share of supernumerary expenditure, namely, the share of remaining
expenditure once all subsistence quantities have been purchased, on good g. As in the Cobb–Douglas
case, we normalize the G× 1 parameter vector β so that

∑
g βg = 1. Thus, the model has 2G− 1

parameters we must estimate.

Solving
maxq

∏
g

(qg − µg)βg s. t. p′q ≤ m

yields the expenditure-share functions

wg(p,m;β,µ) =
pgµg
m

+ βg

(
1−

∑
h

phµh
m

)

The term to the left of the plus sign is the fraction of expenditure that must be spent on good g to
maintain subsistence. To the right, the term bound in parentheses is the fraction of expenditure left
after the subsistence level for all other goods has been spent. Of this amount, a share βg is spent on
good g. The normalization that

∑
g βg = 1 ensures that

∑
g wg(p,m) = 1, as must be true of a

demand system.

While we have interpreted the µg as minimum required amounts of each good, there is no
requirement that µg > 0 for all g, nor do we impose any such constraints during estimation.
Moreover, for this interpretation to hold we must have that for each household i,

∑
g pgiµgi ≤ mi.
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Example 2
Here we fit an LES to the same data as in example 1.

. use https://www.stata-press.com/data/r18/food_consumption, clear
(Food consumption)

. demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditure(expfd) nolog

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
FGNLS iteration 5 ...

Linear expenditure system Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Centered R2 of model for
Good 1 = -0.0508
Good 2 = 0.0494
Good 3 = 0.0366
Good 4 = 0.0829
Good 5 = 0.0603

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

1 .1650894 .0018783 87.89 0.000 .161408 .1687708
2 .4108231 .0033135 123.98 0.000 .4043288 .4173175
3 .2262407 .0024899 90.86 0.000 .2213607 .2311208
4 .0949082 .0013152 72.16 0.000 .0923304 .097486

mu
Good

1 .1794068 .0383858 4.67 0.000 .1041721 .2546416
2 .6975436 .0800327 8.72 0.000 .5406824 .8544048
3 2.368491 .1351367 17.53 0.000 2.103628 2.633354
4 .4215745 .0202499 20.82 0.000 .3818854 .4612636
5 .3742182 .0243646 15.36 0.000 .3264644 .421972

Note: beta estimates measure how expenditure shares respond to increases in
supernumerary income.

Note: mu estimates are subsistence levels of consumption for each good.

Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

5 .1029385 .0015833 65.02 0.000 .0998354 .1060416

Note: beta estimates sum to 1.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd

We specified the nolog option to suppress the detailed iteration log. We first noticed that the R2 for
the model for Good 1 is actually negative. Because the equations here are nonlinear, the value of R2

is not constrained to be between 0 and 1; that is only true for linear regression. The footer of the
table with normalized parameters reemphasizes the fact that we have made

∑
g βg = 1.
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All the µ parameters are greater than zero. The µ parameter for Good 3, fruits and vegetables, is
largest, implying the physical quantity of them required is much higher than the other four goods.
However, we should also look at the average prices of the goods:

. summarize p_*

Variable Obs Mean Std. dev. Min Max

p_dairy 4,160 .4387958 .4238236 .1041262 18
p_proteins 4,160 1.729284 .69554 .3333333 9.258823
p_fruitveg 4,160 .5472199 .1945325 .1073369 2.672269

p_flours 4,160 1.49421 .6816424 .0805687 7.202127
p_misc 4,160 1.47115 .8588024 .1428571 15.74629

Based on the average price of each good, the dollar amount of protein required for survival is only
9 cents less than the dollar amount of fruits and vegetables required (2.368× 0.547 = $1.30 versus
0.698× 1.729 = $1.21).

As we mentioned in the introductory remarks, if you have demographic variables, you should
incorporate them into your model. demandsys incorporates demographics into models by applying
Pollak and Wales’s (1978) “demographic translation” to the expenditure-share equations. Just as the
linear expenditure system is a translated version of the Cobb–Douglas system, Pollak and Wales
incorporate demographics by translating the consumer’s available level of expenditures.

Suppose for each consumer we have a D × 1 vector of demographic characteristics d. We have
G expenditure-share equations, so associated with d is a G×D matrix of parameters N with typical
row νg . Let c = Nd with typical element cg . In demographic translation, we write each translated
demand function as

xg(p,m, c) = cg + xg(p,m−
∑
h

phch)

For the LES, we have

xg(p,m,d;β,µ,N) = (µg + cg) +
βg
pg

(
m−

∑
h

phµh −
∑
h

phch

)

so that

wg(p,m,d;β,µ,N) =
pg(µg + νgd)

m
+ βg

{
1−

∑
h ph (µh + νhd)

m

}
For the LES, the effect of the demographic variables is to adjust the µ parameters, though we must be
cautious in interpreting the term µg + νgd as a minimum required quantity because there is nothing
preventing it from being negative.
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Example 3

The dataset described in example 1 also includes two demographic characteristics, the numbers of
children and adults in each household. Here we refit the LES to these data, controlling for these two
demographics.

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)

. demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditure(expfd) demographics(n_kids n_adults) nolog

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
FGNLS iteration 5 ...

Linear expenditure system Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2

Centered R2 of model for
Good 1 = -0.0444
Good 2 = 0.0665
Good 3 = 0.0584
Good 4 = 0.1576
Good 5 = 0.0922

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

1 .1656925 .0023639 70.09 0.000 .1610594 .1703256
2 .4170346 .0042631 97.82 0.000 .408679 .4253901
3 .2434237 .0032072 75.90 0.000 .2371377 .2497098
4 .0800666 .0015889 50.39 0.000 .0769525 .0831808

mu
Good

1 -.3932844 .164016 -2.40 0.016 -.71475 -.0718189
2 -.53048 .1798223 -2.95 0.003 -.8829251 -.1780349
3 1.010915 .3046076 3.32 0.001 .4138951 1.607935
4 -.0269827 .0426005 -0.63 0.526 -.1104782 .0565128
5 .0097685 .0526521 0.19 0.853 -.0934277 .1129647

Nu
Good#

c.n_kids
1 .4332196 .160145 2.71 0.007 .1193413 .747098
2 -.0680289 .1197109 -0.57 0.570 -.302658 .1666002
3 -.7945652 .2003774 -3.97 0.000 -1.187298 -.4018328
4 .3923541 .0273698 14.34 0.000 .3387103 .4459979
5 .3563529 .0368047 9.68 0.000 .284217 .4284888

Good#
c.n_adults

1 .4856673 .1525998 3.18 0.001 .1865771 .7847574
2 .8669319 .1316001 6.59 0.000 .6090005 1.124863
3 .843552 .227083 3.71 0.000 .3984775 1.288626
4 .3576213 .0318802 11.22 0.000 .2951373 .4201054
5 .2639693 .0374888 7.04 0.000 .1904925 .3374461
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Note: beta estimates measure how expenditure shares respond to increases in
supernumerary income.

Note: mu estimates are subsistence levels of consumption for each good.
Note: Nu estimates measure the effect of demographic variables on subsistence

levels of consumption.

Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

5 .0937826 .0019264 48.68 0.000 .090007 .0975582

Note: beta estimates sum to 1.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids n_adults

The estimated parameter matrix N is shown in the last block of the coefficient table, and demandsys
labels the coefficients using factor-variable notation. Yet you should not think of the terms as you would
of interactions in a regression. Here the notation means something different. The first five rows of
the output for N correspond to the demographic variable n kids and how it affects the consumption
of each good. The remaining five correspond to n adults. For instance, all the coefficients for
n adults are positive, as we would expect, meaning that having more adults in the family increases
consumption of all goods. The coefficient for n kids on the consumption of Good 3, fruits and
vegetables, is negative, meaning consumption decreases as the number of children increases.

Directly interpreting the coefficients on demographic variables is not difficult for the LES, but
for more complicated models, it can be. One easy way to see the practical effect of that negative
coefficient is to use the margins command to see how our predicted quantity for Good 3 changes
as the number of children changes.

. margins, predict(quantities equation(#3)) at(n_kids=1 n_kids=2 n_kids=3)

Predictive margins Number of obs = 4,160
Model VCE: GNR

Expression: Predicted quantity of good 3, predict(quantities equation(#3))
1._at: n_kids = 1
2._at: n_kids = 2
3._at: n_kids = 3

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 22.57831 .1734791 130.15 0.000 22.2383 22.91833
2 21.407 .2254155 94.97 0.000 20.96519 21.84881
3 20.23569 .323032 62.64 0.000 19.60256 20.86882

We asked margins to produce predictions of quantities of Good 3, fruits and vegetables, by specifying
the equation(#3) option, and we asked it to do so when the number of children is equal to one,
again when the number of children is equal to two, and finally when the number of children is equal
to three. margins first sets n kids equal to one for all 4,160 observations in the estimation sample
and obtains the predicted quantities; the mean of those predictions is 22.6. When n kids is equal
to two for all observations, the mean is 21.4, and when n kids is equal to three, the mean is 20.2.

Kids do not always eat their fruits and vegetables, but finding that the quantity of fruits and
vegetables actually declines as the household grows is rather surprising. Perhaps we have omitted

https://www.stata.com/manuals/rmargins.pdf#rmargins
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other relevant demographic variables from our model, biasing our estimates, or perhaps the model
itself is simply too rigid.

Finally, we use estat elasticities to obtain uncompensated price elasticities. We will obtain
two sets of results, one for households with fewer than three kids and one for households with three
or more kids.

. estat elasticities if n_kids <= 2, uncompensated

Uncompensated (Marshallian) price elasticities Number of obs = 3,742

Price Elasticity Std. err. z P>|z| [95% conf. interval]

Good 1
Good

1 -.9537446 .0083361 -114.41 0.000 -.970083 -.9374061
2 -.00852 .0015032 -5.67 0.000 -.0114662 -.0055738
3 -.0083598 .0014808 -5.65 0.000 -.0112621 -.0054574
4 -.0062373 .0011228 -5.56 0.000 -.0084379 -.0040367
5 -.0071346 .0012983 -5.50 0.000 -.0096793 -.00459

Good 2
Good

1 -.0621117 .012096 -5.13 0.000 -.0858194 -.038404
2 -.9289446 .0085912 -108.13 0.000 -.945783 -.9121063
3 -.0499231 .0062304 -8.01 0.000 -.0621346 -.0377117
4 -.0390871 .0048967 -7.98 0.000 -.0486844 -.0294897
5 -.0445883 .0056323 -7.92 0.000 -.0556274 -.0335492

Good 3
Good

1 -.0503597 .0118715 -4.24 0.000 -.0736274 -.0270921
2 -.0410463 .0036302 -11.31 0.000 -.0481614 -.0339312
3 -.886701 .0100534 -88.20 0.000 -.9064052 -.8669968
4 -.030438 .0027264 -11.16 0.000 -.0357816 -.0250944
5 -.0348829 .0032109 -10.86 0.000 -.0411761 -.0285897

Good 4
Good

1 -.0428307 .0038014 -11.27 0.000 -.0502814 -.0353801
2 -.0373442 .0014421 -25.90 0.000 -.0401707 -.0345178
3 -.0357288 .0013809 -25.87 0.000 -.0384354 -.0330223
4 -.7107582 .0101357 -70.12 0.000 -.7306238 -.6908925
5 -.0306015 .0012718 -24.06 0.000 -.0330941 -.0281089

Good 5
Good

1 -.0347514 .0047892 -7.26 0.000 -.0441381 -.0253647
2 -.0296409 .0016063 -18.45 0.000 -.0327893 -.0264926
3 -.0285217 .0015907 -17.93 0.000 -.0316394 -.025404
4 -.0212131 .0011859 -17.89 0.000 -.0235375 -.0188887
5 -.7824229 .0109448 -71.49 0.000 -.8038744 -.7609714
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. estat elasticities if n_kids >= 3, uncompensated

Uncompensated (Marshallian) price elasticities Number of obs = 418

Price Elasticity Std. err. z P>|z| [95% conf. interval]

Good 1
Good

1 -.9395485 .0146154 -64.28 0.000 -.9681941 -.9109029
2 -.0126359 .0032625 -3.87 0.000 -.0190303 -.0062416
3 -.0146746 .004299 -3.41 0.001 -.0231005 -.0062486
4 -.0082076 .002108 -3.89 0.000 -.0123393 -.0040759
5 -.0093949 .0024408 -3.85 0.000 -.0141788 -.0046109

Good 2
Good

1 -.023357 .0100783 -2.32 0.020 -.04311 -.0036039
2 -.9674982 .0135281 -71.52 0.000 -.9940128 -.9409836
3 -.028745 .0152303 -1.89 0.059 -.0585959 .0011058
4 -.0152942 .0064352 -2.38 0.017 -.0279071 -.0026813
5 -.0178107 .007578 -2.35 0.019 -.0326633 -.0029581

Good 3
Good

1 -.0000379 .0055043 -0.01 0.995 -.0108261 .0107504
2 .0001398 .0056976 0.02 0.980 -.0110273 .0113068
3 -1.000682 .0201954 -49.55 0.000 -1.040264 -.9610998
4 -.0000842 .0035771 -0.02 0.981 -.0070951 .0069268
5 -.0000569 .0041395 -0.01 0.989 -.0081702 .0080565

Good 4
Good

1 -.0451601 .0025582 -17.65 0.000 -.0501741 -.0401461
2 -.0463532 .0024489 -18.93 0.000 -.051153 -.0415534
3 -.052944 .0045994 -11.51 0.000 -.0619587 -.0439293
4 -.6843304 .0131677 -51.97 0.000 -.7101385 -.6585222
5 -.0334225 .0018152 -18.41 0.000 -.0369803 -.0298648

Good 5
Good

1 -.0356486 .002797 -12.75 0.000 -.0411305 -.0301666
2 -.0365794 .0027339 -13.38 0.000 -.0419377 -.0312212
3 -.0401475 .0035616 -11.27 0.000 -.0471281 -.033167
4 -.0234098 .0017471 -13.40 0.000 -.0268341 -.0199856
5 -.7542306 .0156676 -48.14 0.000 -.7849385 -.7235226

For example, in the table for households with 3 or more children, the price elasticity for Good 5
with respect to Good 1 is −0.0356486. Among these households, if the price of Good 5 (miscellaneous
items) increases by 1%, then the quantity of Good 1 (dairy products) purchased will decrease by an
average of 0.036%.

We summarize the own-price elasticities in table 1. We again focus on the demand for fruits and
vegetables. Among households with two children or fewer, it is inelastic, while it is (barely) elastic
for households with three or more children. Again, we have no explanation for why that would be the
case, though we suspect the model is simply too rigid to accurately model the consumption patterns
seen in our data.
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Table 1: Own-price elasticities based on number of children

# of Children
Good ≤ 2 ≥ 3
Dairy −0.954 −0.940
Proteins −0.939 −0.967
Fruits & vegetables −0.887 −1.001
Flours −0.711 −0.684
Miscellany −0.782 −0.754

Translog

Pollak and Wales (1992, sec. 3.1) discuss an entire class of demand systems that they describe
as the transcendental logarithmic or “translog” family. We implement the version they call the “basic
translog” function, which is probably the most well known, because it corresponds to the translog
indirect utility function proposed by Christensen, Jorgenson, and Lau (1975). We also implement the
version Pollak and Wales call the “generalized translog” function, which is a more flexible version
of the basic translog that has been translated in a way analogous to how the LES is a shifted version
of the Cobb–Douglas utility function.

Basic translog

Christensen, Jorgenson, and Lau (1975) proposed both direct and indirect utility functions with the
“translog” functional form. For their direct utility function, they obtain expenditure shares that are a
function of expenditure and quantities, which is not the focus of demandsys. We instead implement
the demand system based on their translog indirect utility function. The starting point is the indirect
utility function

lnv(p,m;α,Γ) = −
∑
g

αgln
pg
m
− 1

2

∑
g

∑
h

γghln
pg
m

ln
ph
m

(1)

Equation (1) is twice differentiable in prices, and based on Young’s (1909) theorem, we must have
γgh = γhg for all g and h. (Young’s theorem states that cross-partial derivatives are equal.)

Roy (1943) introduced what would be known as Roy’s identity, which equates a consumer’s
Marshallian demand function for a good with a function of their indirect utility function. Applying
Roy’s identity, we have the expenditure-share functions

wg(p,m;α,Γ) =
αg +

∑
h γghlnphm

1 +
∑
j

∑
h γjhlnphm

where we have imposed the normalization
∑
g αg = 1. This ensures that the expenditure shares sum

to 1, a property known as “additivity”.

As we remarked in the introduction, if one has relevant demographic variables, one should include
them in the demand system, so we will not present an example of the translog model without
demographic variables. Moreover, it is in fact easier to describe how we incorporate demographic
variables into the translog system if we first describe the generalized translog model.
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Generalized translog

Another way to perform translation and introduce subsistence or committed quantities into a
demand system is to translate the indirect utility function, so that consumers’ effective expenditures
are their expenditures after the subsistence quantities of all goods are purchased. Pollak and Wales
(1992, 56) do this to Christensen, Jorgenson, and Lau’s (1975) indirect utility function to obtain

lnv(p,m;α,Γ,µ) = −
∑
g

αgln
pg
m
− 1

2

∑
g

∑
h

γgh ln
pg
m

ln
ph
m

m = m−
∑
h

phµh
∑
h

αh = 1 γgh = γhg

where again µ is a G × 1 vector of subsistence quantities with typical element µg . A tedious but
straightforward application of Roy’s identity gives the expenditure-share functions as

wg(p,m;α,Γ,µ) =
pgµg
m

+
m

m

(
αg +

∑
h γghlnphm

1 +
∑
j

∑
h γjhlnphm

)
m = m−

∑
h

phµh
∑
h

αh = 1 γhj = γjh

It is apparent that the sum of wg(p,m;α,Γ,µ) across all g is equal to one, as must be true of a
demand system. Again, suppose for each consumer that we have a D× 1 vector of demographics d
and an associated G×D matrix N, and again, let cg denote the gth element of the vector c = Nd.

To apply both demographic characteristics and committed quantities, we can translate the translog
indirect utility function, this time with the value (µg + cg) replacing µg in the developments above.
Thus, the generalized translog system with demographic variables has expenditure-share functions of
the form

wg(p,m,d;α,Γ,µ,N) =
pg(µg + νgd)

m
+
m

m

(
αg +

∑
h γghlnphm

1 +
∑
j

∑
h γjhlnphm

)
m = m−

∑
h

ph(µh + νhd)
∑
h

αh = 1 γhj = γjh

The basic translog model results if we set µ = 0 and N = 0, and the basic translog model with
demographics results if we set just µ = 0. The generalized translog model results if we set just
N = 0. The generalized translog model is essentially a translog model with a constant term included
among the demographic variables.
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Example 4

We first fit a basic translog model to our food consumption data, controlling for the number of
children and adults in each household. We will also store these estimation results so we can use them
later.

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)

. demandsys translog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults)
> labels("dairy proteins fruitveg flours misc")
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...

Basic translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2

Centered R2 of model for
dairy = 0.0448
proteins = 0.1593
fruitveg = 0.0976
flours = 0.1881
misc = 0.1678

Calculating expenditure elasticities ...

Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .90727 .0157948 57.44 0.000 .8763129 .9382272
proteins 1.0912 .0102476 106.48 0.000 1.071115 1.111285
fruitveg .9629558 .0128444 74.97 0.000 .9377813 .9881303

flours .8728076 .0152504 57.23 0.000 .8429174 .9026979
misc 1.000333 .0177894 56.23 0.000 .9654664 1.0352

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store translog

We specified the nocoeftable option to suppress the coefficient table and the elastici-
ties(expenditure) option to obtain expenditure elasticities. Finally, we used the labels() option
to name our five goods. Had we not done that, then the output would simply have numbered the
goods from one to five.

For comparison’s sake, we also fit the equivalent generalized translog model. We note that despite
the long commands, the following one differs from the previous by just one character:
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. demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults)
> labels("dairy proteins fruitveg flours misc")
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...

Generalized translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2

Centered R2 of model for
dairy = 0.0478
proteins = 0.1615
fruitveg = 0.0988
flours = 0.1903
misc = 0.1732

Calculating expenditure elasticities ...

Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .906851 .0174393 52.00 0.000 .8726707 .9410313
proteins 1.074059 .01144 93.89 0.000 1.051637 1.096481
fruitveg .9716098 .0144251 67.36 0.000 .943337 .9998826

flours .892461 .0170431 52.36 0.000 .8590571 .9258649
misc 1.023297 .0194942 52.49 0.000 .9850886 1.061504

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store gtranslog

The R2 statistics from the generalized translog model are trivially higher than for the basic translog
model. Because demandsys is based on maximum likelihood estimation and because the translog
model is nested within the generalized translog model, we can use a likelihood-ratio test to see
whether the inclusion of committed quantities is warranted here.

. lrtest gtranslog translog

Likelihood-ratio test
Assumption: translog nested within gtranslog

LR chi2(5) = 59.00
Prob > chi2 = 0.0000

The generalized translog model adds additional G parameters over the basic translog model, so the
χ2 statistic has five degrees of freedom in this example. The result indicates that the use of the
generalized version of the translog model is warranted. Of course, if you do this test for your own
models, you must use the same demographic specification in both.
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As we cautioned with the LES, interpreting the µ parameters of the generalized translog model as
subsistence quantities requires care. We do not force the estimates to be positive, nor does demandsys
check that

∑
g pgi(µg + ν′gdi) ≤ mi for each observation i in the dataset or that µg + ν′gdi ≥ 0

for each observation and each good, both of which must be true if the subsistence argument is to
be credible. We have noted that the generalized translog model can produce negative estimates of
µ’s quite frequently and changing the demographic specification is often enough to produce negative
estimates.

For example, if we refit the previous example controlling for just the number of children but not
the number of adults, we obtain negative estimates for some of the µ parameters:

. demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids) expenditure(expfd) nolog

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...

Generalized translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 1

Centered R2 of model for
Good 1 = 0.0421
Good 2 = 0.1600
Good 3 = 0.0929
Good 4 = 0.1825
Good 5 = 0.1706

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1745891 .0097353 17.93 0.000 .1555082 .1936699
2 .3416641 .0188744 18.10 0.000 .304671 .3786572
3 .3634044 .0192262 18.90 0.000 .3257218 .401087
4 .0598082 .0066154 9.04 0.000 .0468423 .0727741

Gamma
Good_g#
Good_h

1#1 .0232919 .002496 9.33 0.000 .0183998 .0281841
1#2 -.0146955 .0032932 -4.46 0.000 -.02115 -.0082411
1#3 .0005704 .0018905 0.30 0.763 -.0031349 .0042758
1#4 .001351 .0009723 1.39 0.165 -.0005546 .0032566
1#5 .0026193 .0010776 2.43 0.015 .0005073 .0047312
2#2 .120652 .0085591 14.10 0.000 .1038764 .1374275
2#3 -.0301533 .0055644 -5.42 0.000 -.0410593 -.0192474
2#4 -.0184411 .0027052 -6.82 0.000 -.0237432 -.013139
2#5 -.0228452 .0032034 -7.13 0.000 -.0291238 -.0165667
3#3 .0698867 .0067428 10.36 0.000 .056671 .0831023
3#4 .0006331 .0013394 0.47 0.636 -.0019921 .0032583
3#5 -.0065477 .0017672 -3.71 0.000 -.0100113 -.003084
4#4 .0233853 .0023855 9.80 0.000 .0187097 .0280608
4#5 -.0074747 .0011361 -6.58 0.000 -.0097014 -.005248
5#5 .0323539 .0030878 10.48 0.000 .0263019 .0384059
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mu
Good

1 -.1560689 .0474664 -3.29 0.001 -.2491014 -.0630364
2 -.811357 .2053695 -3.95 0.000 -1.213874 -.4088403
3 -.7661874 .3576453 -2.14 0.032 -1.467159 -.0652155
4 .2121302 .0367754 5.77 0.000 .1400517 .2842088
5 .0887401 .0446207 1.99 0.047 .0012853 .176195

Nu
Good#

c.n_kids
1 -.5508243 .1957429 -2.81 0.005 -.9344733 -.1671753
2 -1.350384 .1934558 -6.98 0.000 -1.72955 -.9712174
3 -2.749218 .303765 -9.05 0.000 -3.344586 -2.153849
4 .0446037 .0442943 1.01 0.314 -.0422117 .131419
5 -.1036959 .0559887 -1.85 0.064 -.2134318 .0060399

Note: alpha estimates are constant expenditures for each good.
Note: Gamma estimates measure the effect of price on expenditures shares

across goods.
Note: mu estimates are subsistence levels of consumption for each good.
Note: Nu estimates measure the effect of demographic variables on shares and

subsistence levels of consumption.

Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .0605342 .007785 7.78 0.000 .045276 .0757925

Note: alpha estimates sum to 1.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids

Here, again, we see factor-variable notation for the parameter matrix N but also for Γ. As we
mentioned before, you should not interpret the factor-variable notation as you would in a regression
output. We see the estimate labeled 1#2 under Good g#Good h. This is the estimate of γ12, the
coefficient associated with lnp2/m in the equation for Good 1.

AIDS
One of the most commonly used demand systems is the celebrated AIDS model of Deaton and

Muellbauer (1980b). Among other benefits, the AIDS model can be viewed as a first-order approximation
to any demand system. Historically, the AIDS model was also favored because it is “almost linear”
in the sense that replacing the price index with an approximation results in share equations that
are linear. Given the speed with which computers can fit nonlinear systems of equations, we do not
implement that approximation.

An additional nice property of the AIDS model is that the functional form for its budget shares
is a member of the “price-independent generalized log-linear” and the broader “price-independent
generalized linear” families. An advantage to price-independent generalized linear expenditure shares
is that they satisfy certain conditions required for the existence of a representative consumer and the
related theory of aggregation. In short, expenditure shares of this form can be fit to data aggregated
across consumers. The implied market demand curves are consistent with a single utility-maximizing
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representative agent and satisfy the same conditions like Slutsky symmetry that hold for demand
curves implied by a single consumer’s utility-maximizing behavior. For more on price-independent
generalized linear demands, see, for example, Muellbauer (1975), Lewbel (1989), and Pollak and
Wales (1992, chap. 2).

The starting point for the AIDS model is the expenditure function

lne(p, u;α0,α,β,Γ) = (1− lnu)lna(p) + lnu {lna(p) + b(p)} (2)

where u is utility, the price index lna(p) is defined as

lna(p) ≡ α0 +
∑
g

αglnpg +
1

2

∑
g

∑
h

γghlnpglnph

where pg is the price of good g, and the price aggregator b(p) is defined as

b(p) ≡ β0
∏
g

pβg
g

Parameter β0 cannot be distinguished from u, so we take β0 = 1 in the following. In their original
formulation, Deaton and Muellbauer (1980b) wrote their expenditure function slightly differently, with
u in place of lnu in (2). We have chosen to use lnu to draw some comparisons with the QUAIDS model
later, and because utility is an ordinal concept, it will not affect the expenditure-share equations.

Suppose that all prices are equal to one. Then (2) with β0 = 1 implies that lne(p, u) = α0. Thus,
exp(α0) can be interpreted as the level of expenditure needed for minimal subsistence when all prices
are equal to one. In practice, estimating α0 is difficult, particularly when prices are correlated, as they
often are. Therefore, by default, we set α0 equal to the natural logarithm of the minimum level of
expenditure in the estimation sample. You can override the default by specifying the piconstant()
option. Of course, prices are generally not all equal to one, so you will want to try various values
for α0 to see how sensitive elasticities and other calculations you may perform are to its value.

Expenditure functions consistent with rational consumer choice must be homogeneous of degree
one in prices and expenditure, which imply that we must have

∑
g αg = 1,

∑
g βg = 0, and∑

g γgh =
∑
h γgh = 0. Slutsky symmetry further requires that γgh = γhg for all g and h. Note

that demandsys imposes these restrictions on the model being fit. An alternative is to fit the model
with and without one or more of those restrictions and then test whether they hold. However, such
unrestricted models can often fail to converge because of the increased number of parameters or
because the models are “too flexible” and contain unidentifiable parameters.

Shephard’s (1970) lemma equates the Hicksian demand functions with the partial derivatives of
the expenditure function with respect to the price of the goods. Using Shephard’s lemma, we can
write the expenditure-share functions as

wg(p,m;α0,α,β,Γ) = αg +
∑
h

γghlnph + βgln
{

m

a(p)

}
(3)

Notice the simplicity of these share equations. Good g’s expenditure share depends linearly on the
log prices of all the goods as well as the log of an expenditure term. The expenditure term m/a(p)
essentially adjusts each household’s expenditure to control the cost of living faced by that household.
This term is sometimes referred to as deflated expenditure. Equation (3) also makes clear that luxury
goods have βg > 1 while necessities have βg < 1; inferior goods have βg < 0.
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Setting e(p, u) = m and manipulating (2) yields the indirect utility function

lnv(p,m;α0,α,β,Γ) =
lnm− lna(p)

b(p)
(4)

We will come back to this equation below. We show how the indirect utility function plays a role in
computing welfare measures in [R] demandsys postestimation.

QUAIDS
The Engel curves for the AIDS model have the so-called “Working–Leser” form after Working (1943)

and Leser (1963),
wg = ωg + ψglnm

so that the share of expenditures spent on good g is a linear function of the logarithm of total
expenditures. Banks, Blundell, and Lewbel (1997) provided evidence that in fact linear Engel curves
provide a poor fit for many goods. They therefore consider Engel curves with an additional expenditure
term,

wg = Ag(p) +Bg(p)ln
{

m

a(p)

}
+ Cg(p) f

{
m

a(p)

}
(5)

where Ag(p), Bg(p), and Cg(p) are differentiable functions of prices and f {m/a(p)} is a
differentiable function of real expenditures. a(p) is the same translog price index as in the AIDS
model.

Lewbel (1991), building on the work of Gorman (1981), showed that any exactly aggregable demand
system must have the form of (5) and that additional terms containing functions of m/a(p) are not
theoretically possible if exact aggregability is to hold. Lewbel (1991) termed demand systems of the
form (5) as having rank three because there are three linearly independent terms; Gorman (1981)
showed that the maximum rank of demand systems is three if exact aggregability is to hold. In
contrast, the AIDS model has rank two.

Banks, Blundell, and Lewbel (1997) further showed that the only indirect utility functions consistent
with rank-three expenditure-share equations like (5) have the form

lnv(p,m) =

[{
lnm− lna(p)

b(p)

}−1
+ λ(p)

]−1
where in their application they use the same definitions for a(p) and b(p) as in the AIDS model and
they take λ(p) =

∑
g λglnpg with

∑
g λg = 0. As with the restrictions implied by economic theory

for the AIDS model, demandsys imposes the restriction that the λ’s sum to zero. Also notice that if
we restrict λg = 0 for all g, we are left with the indirect utility function for the AIDS model shown
in (4).

Solving for lnm yields the cost function

lne(p, u) =
b(p)

1
lnu − λ(p)

+ lna(p)

Applying Shephard’s lemma, we have the expenditure-share functions

wg(p,m;α,Γ,Λ) = αg +
∑
h

γghlnph + βgln
{

m

a(p)

}
+

λg
b(p)

[
ln
{

m

a(p)

}]2
This equation also makes clear our earlier claim that if λg = 0 for all g then the QUAIDS model
reduces to the AIDS model; see (3).

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Controlling for demographic factors

demandsys allows you to choose between two different methods of incorporating demographic
characteristics into AIDS and QUAIDS. The first method is the same as we have used with demand
systems we have already covered: Pollak and Wales’s (1978) demographic translation. An added
benefit of translation is that it allows us to introduce constant terms that might be interpreted as
subsistence or committed quantities. A possible downside to demographic translation is that the
intuition behind how demographic variables affect expenditure shares may not strike all users as
entirely lucid. Essentially, demographic variables alter the level of subsistence for each household or
observation. However, as we cautioned above in our discussion of the generalized translog model,
there are no restrictions to force

∑
g pgi(µg + ν′gdi) ≤ mi, nor are there any restrictions to force

(µg + ν′gdi) ≥ 0.

The second method of incorporating demographics that demandsys implements is based on
Ray (1983) and Poi (2002) and is known as demographic scaling. This method explicitly allows for
demographic variables to have “scale” and “composition” effects on expenditures as we explain below.
There are two possible downsides to demographic scaling. First, it does not allow one to incorporate
subsistence quantities into the demand system. While one may be tempted to include a constant term
in the list of demographic variables because that is essentially what demographic translation does
to incorporate subsistence quantities, the resulting parameter estimates do not have such a clearcut
interpretation. Second, in our experience, models that incorporate demographic scaling sometimes
take many iterations to converge. Specifying fewer demographic characteristics may help achieve
convergence. We think this method is more intuitive than demographic translation, but either method
should prove adequate for most applications.

Demographic translation

We have already discussed demographic translation in the context of the LES and the translog and
generalized translog demand systems, so we will not show the details here. In Methods and formulas,
we show the formula for the expenditure shares for the generalized QUAIDS model, and we discuss the
parameter restrictions that give rise to the generalized AIDS model and their nongeneralized variants.

demandsys provides for four models in the AIDS family that can incorporate demographic variables
via demographic translation: aids, quaids, gaids, and gquaids. The first two models do not allow
for committed quantities, while the latter two represent generalized variants that do. The arguments
in Pollak and Wales (1992, 75) suggest that the generalized variants are to be preferred because doing
so ensures that a constant term is included in each demand equation (compare with share equation).
Whether the constants allow for a subsistence interpretation is another matter, and in [R] demandsys
postestimation, we provide an example of how to see whether that interpretation holds.

Demographic scaling

demandsys also implements the demographic scaling method used by Ray (1983) for the AIDS
model and extended by Poi (2002) to the QUAIDS model. For each consumer, we again have a D-length
vector of demographic characteristics d. Suppose d is the number of children in a household and
we are modeling expenditures on household goods, rent, utilities, and food. Then the household’s
expenditures will presumably increase by virtue of there being more members in the household; call
this the scale effect. Second, the consumption pattern of the household may shift as more money is
spent on items consumed by children versus adults; think of that as a composition effect. Ray (1983)
does this by writing the expenditure function as

e(p,d, u) = eR(p, u) m0(d) φ(p,d, u)

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Here eR(p, u) is the expenditure function for a reference household, where d = 0. m0(d) increases
total expenditure of the household and accounts for the scale effect. φ(p,d, u) controls for composition
effects. For AIDS, Ray (1983) controlled for both of these effects by taking

m0(d) = 1 + ρ′d

for G× 1 parameter vector ρ and

φ(p,d, u) = exp

{
u
∏
i

pβg
g

(∏
g

p
ηgd
g − 1

)}

where ηg is the gth row of G×D parameter matrix H. In Methods and formulas, we show that the
expenditure-share functions for the AIDS model with demographic scaling are

wg(p,m,d;α0,α,β,Γ,λ,ρ,H) = αg +
∑
h

γghlnph + (βg + ηid)ln
{

m

m0(d;ρ) a(p)

}

Basically, the function m0(d;ρ) acts to reduce the effective amount of money available for spending.
If d represents a set of indicator variables for regions of a country, then m0(d;ρ) is controlling for
the cost of living in different regions of the country. The function φ(p,d, u) is to make each good’s
expenditure expansion path a function of the household’s demographics. Rather than all households
increasing their expenditure share of good g by the same βg in response to a change in m, now their
responses can vary by household composition.

For the QUAIDS model, we show in Methods and formulas that an appropriate choice for φ(p,d, u)
leads to expenditure share equations

wg(p,m,d;α0,α,β,Γ,λ,ρ,H) =αg +
∑
h

γghlnph + (βg + ηid)ln
{

m

m0(d;ρ) a(p)

}

+
λg

b(p) c(p,d)

[
ln
{

m

m0(d;ρ) a(p)

}]2
The models aids and quaids allow for demographic scaling. To request demographic scaling,

rather than demographic translation, we specify the scaling suboption of the demographics()
option, as the next example shows.



demandsys — Estimation of flexible demand systems 29

Example 5

Here we fit a QUAIDS model to our food consumption data, controlling for the numbers of children
and adults in each household. We request that demographic scaling be used rather than the default
demographic translation.

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)

. demandsys quaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults, scaling)
> labels("dairy proteins fruitveg flours misc")
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...

Quadratic AIDS model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Price index constant = 1.615
Demographic method: Scaling Number of demographics = 2

Centered R2 of model for
dairy = 0.0453
proteins = 0.1530
fruitveg = 0.0949
flours = 0.1813
misc = 0.1726

Calculating expenditure elasticities ...

Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .8918188 .0176252 50.60 0.000 .857274 .9263636
proteins 1.077283 .0117431 91.74 0.000 1.054267 1.100299
fruitveg 1.043209 .014428 72.30 0.000 1.01493 1.071487

flours .8409016 .0162384 51.78 0.000 .8090749 .8727284
misc .9460643 .0189172 50.01 0.000 .9089873 .9831414

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store quaids_s

Because the QUAIDS model with demographic scaling for a 5-good system with 2 demographic
variables has 32 estimated parameters, we instructed demandsys to report expenditure elasticities
rather than the estimated parameters. We draw your attention to this part of the command:

demographics(n_kids n_adults, scaling)

Notice that we specified the suboption scaling. Had we not included this suboption, then demandsys
would have used demographic translation instead. Finally, we asked Stata to store these estimation
results as quaids s.

The header of the output shows that demandsys fit a QUAIDS model as requested and that our
demographic variables were incorporated using demographic scaling. Take note of the line that reads

Price index constant = 1.615

In our discussion of the basic AIDS model, we discussed the price index a(p) that includes a constant
term α0. We discussed that when all prices are equal to one, then exp(α0) can be interpreted as the



30 demandsys — Estimation of flexible demand systems

level of expenditure needed for minimal subsistence. demandsys looked at our expenditure variable
expfd and found that the minimum value within the estimation sample is $5.03. It therefore set
α0 = ln 5.03 = 1.615. You can specify your own value for α0 by using the piconstant() option,
which stands for price index constant.

The QUAIDS model nests the AIDS model, so we can easily use a likelihood-ratio test to see whether
the quadratic terms in the expenditure-share equations contribute to the explanatory power of the
model. We include quietly to fit the corresponding aids model without displaying the results and
store the estimation results:

. quietly demandsys aids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults, scaling)
> labels("dairy proteins fruitveg flours misc") expenditure(expfd)

. estimates store aids_s

Because we specified quietly, we did not request expenditure elasticities. Doing so would have
required Stata to do more computations that we would not have seen.

We now perform the likelihood-ratio test:

. lrtest quaids_s aids_s

Likelihood-ratio test
Assumption: aids_s nested within quaids_s

LR chi2(4) = 36.58
Prob > chi2 = 0.0000

In this example, we reject the null hypothesis that the four free λ parameters are jointly equal to zero.
Hence, the use of the QUAIDS model instead of the linear AIDS model is justified here. (Recall that
to satisfy the adding-up constraint, we impose

∑
g λg = 0 so that in our example the fifth parameter

is determined by the first four and is not estimated.)

When one conducts tests of one model versus another using the likelihood-ratio principle, the
more restrictive model must be nested within the more general model. For example, each of the AIDS
models implemented here is nested within the corresponding QUAIDS models, and the AIDS model
with demographic translation is nested within the generalized AIDS model. But it would make no
sense to fit a generalized AIDS model and compare it with a generalized translog model because one
is not a restricted variant of the other. In Methods and formulas, we describe the most flexible variant
within each class of demand system, and we describe the parameter restrictions that give rise to less
flexible variants; using lrtest to choose among members within the same class is valid.

Also, for a likelihood-ratio test to be valid, the model specifications—apart from the component we
are testing—must be identical. That is, the two models must include the same estimation sample, the
same goods, and the same demographic specification, including the method by which demographic
variables are introduced for AIDS and QUAIDS models. Moreover, for AIDS and QUAIDS models, you
must use the same value for the price index constant α0. If you do not specify the piconstant()
option, demandsys will use the same value, assuming you use the same estimation sample.

Example 6

In this example, we will fit a generalized QUAIDS model, again controlling for the number of
children and adults. Because we are fitting a generalized model, the demographics will be incorporated
via demographic translation. To demonstrate the use of the piconstant() option, we will specify
α0 = 3.
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. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)

. demandsys gquaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults) piconstant(3) expenditure(expfd) nolog

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...

Generalized quadratic AIDS model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Price index constant = 3
Demographic method: Translating Number of demographics = 2

Centered R2 of model for
Good 1 = 0.0486
Good 2 = 0.1596
Good 3 = 0.0996
Good 4 = 0.1893
Good 5 = 0.1715

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1911178 .0084914 22.51 0.000 .1744748 .2077607
2 .2916653 .0180615 16.15 0.000 .2562655 .3270651
3 .3606389 .0168958 21.34 0.000 .3275236 .3937541
4 .0716379 .0045291 15.82 0.000 .062761 .0805149

beta
Good

1 -.0123296 .0075589 -1.63 0.103 -.0271448 .0024857
2 .0007155 .0191227 0.04 0.970 -.0367642 .0381952
3 -.0083997 .0137386 -0.61 0.541 -.0353268 .0185274
4 .0118892 .0045299 2.62 0.009 .0030106 .0207677

Gamma
Good_g#
Good_h

1#1 .0381355 .0030825 12.37 0.000 .032094 .044177
1#2 -.0326578 .0029964 -10.90 0.000 -.0385305 -.026785
1#3 -.0106876 .0026841 -3.98 0.000 -.0159483 -.0054269
1#4 .0021791 .0012889 1.69 0.091 -.000347 .0047052
2#2 .1579944 .0060979 25.91 0.000 .1460428 .169946
2#3 -.0694334 .0044839 -15.49 0.000 -.0782216 -.0606452
2#4 -.0240681 .0020371 -11.82 0.000 -.0280606 -.0200755
3#3 .0923088 .005649 16.34 0.000 .0812371 .1033806
3#4 -.0001376 .0017618 -0.08 0.938 -.0035908 .0033156
4#4 .0313475 .0023698 13.23 0.000 .0267027 .0359922

lambda
Good

1 .0043566 .0028362 1.54 0.125 -.0012022 .0099154
2 .0005707 .0059707 0.10 0.924 -.0111316 .0122729
3 -.006845 .004352 -1.57 0.116 -.0153747 .0016848
4 -.0001594 .0017033 -0.09 0.925 -.0034979 .003179
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mu
Good

1 1.06405 .2097966 5.07 0.000 .6528563 1.475244
2 .6058134 .452923 1.34 0.181 -.2818993 1.493526
3 2.146931 .6621706 3.24 0.001 .8491008 3.444762
4 .3204353 .0685528 4.67 0.000 .1860742 .4547964
5 .3588502 .0854053 4.20 0.000 .1914589 .5262414

Nu
Good#

c.n_kids
1 -.2399127 .1953618 -1.23 0.219 -.6228148 .1429893
2 -1.176653 .1938486 -6.07 0.000 -1.556589 -.7967166
3 -2.604984 .3121795 -8.34 0.000 -3.216844 -1.993123
4 .1120979 .0416122 2.69 0.007 .0305396 .1936563
5 -.0296108 .0541832 -0.55 0.585 -.1358079 .0765863

Good#
c.n_adults

1 -1.271932 .2071674 -6.14 0.000 -1.677972 -.8658909
2 -1.278973 .2249348 -5.69 0.000 -1.719837 -.8381089
3 -2.698807 .3809636 -7.08 0.000 -3.445482 -1.952132
4 -.056265 .0483113 -1.16 0.244 -.1509535 .0384234
5 -.269388 .0569314 -4.73 0.000 -.3809716 -.1578045

Note: alpha estimates are constant terms in expenditure-share equations and
also appear in the price index.

Note: beta estimates measure sensitivity of expenditure shares to changes in
deflated expenditure and also appear in the price aggregator function.

Note: Gamma estimates measure the effect of price on expenditures shares
across goods.

Note: lambda estimates measure the sensitivity of expenditure shares to
changes in deflated expenditure.

Note: Nu estimates measure the effect of demographic variables on expenditure
shares of each good.

Normalized parameters

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .0849402 .0049286 17.23 0.000 .0752803 .0946001

beta
Good

5 .0081246 .0050562 1.61 0.108 -.0017854 .0180345

Gamma
Good_g#
Good_h

1#5 .0030308 .0014661 2.07 0.039 .0001572 .0059044
2#5 -.0318352 .0023155 -13.75 0.000 -.0363734 -.0272969
3#5 -.0120502 .0019986 -6.03 0.000 -.0159674 -.008133
4#5 -.0093209 .0011512 -8.10 0.000 -.0115772 -.0070646

lambda
Good

5 .0020771 .0019631 1.06 0.290 -.0017705 .0059247
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Note: alpha estimates sum to 1.
Note: beta estimates sum to 0.
Note: Gamma estimates sum to 0 over goods.
Note: lambda estimates sum to 0 over goods.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids n_adults

We see in the header of the output that demandsys did set the price index constant α0 = 3 as per
our request.

The µ parameter estimates are all greater than zero, but it is difficult to interpret them in isolation.
Because we control for the number of children and the number of adults in each household, the µ
parameters themselves would represent subsistence expenditure shares for a hypothetical household with
neither any children nor any adults! In a somewhat technical example in [R] demandsys postestimation,
we continue this example and show how to recover the estimated µ and N parameters and then use those
estimates to calculate the actual subsistence shares for each household. We then compare the calculated
subsistence expenditures with actual expenditures to see whether the subsistence interpretation even
holds.

Epilogue

demandsys provides easy access to some of the most commonly used demand systems and their
extensions. You can control for demographic characteristics. Options and postestimation commands
make obtaining elasticities trivial.

Despite what may appear to be a thorough implementation, we have only scratched the surface.
demandsys is designed for large cross-sectional datasets. The Rotterdam model of Theil (1965) and
Barten (1966) and its extensions are widely used in the analysis of time-series data.

A frequent concern is that datasets often have expenditure shares that are zero for some households.
Deaton and Irish (1984) is an early contribution to the literature on how to deal with zero shares. Heien
and Wessells (1990) proposed a two-step Heckman estimation procedure, but it has been shown to
lead to inconsistent estimates (Vermeulen 2001). Tauchmann (2010) provides an alternative Heckman-
type estimator that is consistent. Shonkwiler and Yen (1999) proposed an alternative estimator for
zero shares. See also Yen and Lin (2006) for yet another approach and Meyerhoefer, Ranney, and
Sahn (2005), who develop an estimator that controls for censoring with panel data. More recently, Caro
et al. (2021) have developed the community-contributed Stata command quaidsce, which provides
an implementation of Schonkwiler and Yen’s estimator.

All of our estimators treat price as an exogenous variable. There are multiple reasons why one may
want to allow for endogenous prices. In the classical supply and demand setting, which may occur
for example in small villages, there are a small number of buyers and sellers, so the decisions that
buyers make will influence prices, causing them to be endogenous in expenditure-share equations. A
more pertinent concern is that prices may be measured with error. Consumption is often collected by
survey data, and consumers are often not able to recall the exact price paid for an item. Unobserved
quality differences also cause prices to be measured with error, especially when the goods being
modeled are aggregates of individual items. For example, you may purchase filet mignon every week,
while I purchase economy-grade ground beef. Both items are lumped together as “meat” even though,
arguably, the two products are not even close substitutes; Nelson (1991) considers this type of problem.
Spatial patterns may also make prices endogenous; see Case (1991) as an example.

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimationRemarksandexamplesex2_demandsysp
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Lecocq and Robin (2015) provide a community-contributed command called aidsills that allows
one to fit an AIDS model with endogenous variables. Their command, however, provides the AIDS
and QUAIDS models with only one method of including demographic variables that is similar to the
demographic translation approach used here.

We have presented the QUAIDS model as somewhat of an endpoint because it has rank 3, which
Gorman (1981) and Lewbel (1991) showed is the maximum rank of an exactly aggregable demand
system. Lewbel and Pendakur (2009) develop what they call a theory of “implicit Marshallian demands”
that are not within the class of demand equations considered by Gorman and Lewbel and hence can
have any rank. Lewbel and Pendakur propose a demand system they call the exact affine Stone index
that allows for interactions between prices and expenditures and allows for much more flexible Engel
curves. Their empirical application shows that observed demands often deviate from those implied by
demands that are linear or quadratic in income. Moreover, their model can be fit using the generalized
method of moments, so the possibility of controlling for price endogeneity exists.

Stored results
demandsys stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(n demos) number of demographic factors
e(n goods) number of goods
e(mss #) model sum of squares for the #th equation
e(rss #) residual sum of squares for the #th equation
e(tss #) total sum of squares for the #th equation
e(r2 #) R2 for the #th equation
e(ll) Gaussian log likelihood
e(N clust) number of clusters
e(piconstant) number of constant term
e(rank) rank of e(V)
e(ic) number of iterations
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) demandsys
e(cmdline) command as typed
e(wtype) weight type
e(wexp) weight expression
e(model) demand model
e(model eval) demand evaluator
e(title) title in estimation output
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(demo type) demographic variable specification
e(demos) demographic variables
e(has demos) 1 if demographic variables are used, 0 otherwise
e(expenditures) expenditures variable
e(prices) price variables
e(shares) expenditure-share variables
e(r2 type) R2 type computed
e(p index) whether model has price index
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
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Matrices
e(b) coefficient vector
e(Sigma) error covariance matrix (Σ̂)
e(V) variance–covariance matrix of the estimators
e(b normalized) coefficient vector of the normalized parameters
e(V normalized) variance–covariance matrix of the normalized parameters

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
LES
Generalized translog
QUAIDS with demographic translation
QUAIDS with demographic scaling
Estimation

Introduction

As in the text in Remarks and examples, we continue to use subscript i = 1, . . . , N to index
observations, g = 1, . . . , G to index goods, and d = 1, . . . , D to index demographic variables.
In formulas where we must use double summations across goods, we use h = 1, . . . , G and
j = 1, . . . , G to index goods. We omit the observation subscript for most of this discussion; all
variables and expressions without i subscripts implicitly refer to the ith observation. Only when we
sum across observations do we make the i subscript explicit.

Let wg be the expenditure share for good g defined as wg ≡ (pg qg)/m, where pg is the price
of good g, qg is the quantity of good g consumed, and m denotes total expenditure on all the goods
in the system being modeled. We use w, p, and q to represent the G × 1 vectors of expenditure
shares, prices, and quantities for observation i. Let d represent the D × 1 vector of demographic
characteristics.

We use the notation wg to denote the observed expenditure share for good g for observation i.
We use the notation wg(p,m; θ) to represent an expenditure-share functions where we will replace
generic parameter vector θ with each model’s parameter vectors and matrices. We adorn direct and
indirect utility functions and expenditure functions analogously.

We use the notation Egh to denote the uncompensated (Marshallian) elasticity of the quantity of
good g with respect to the price of good h. We use the notation Eg to note the expenditure elasticity
of good g. Then, given the definition of wg , one can easily verify the following facts that are useful
in obtaining the formulas for the elasticities:
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Eg =
1

wg

∂wg
∂lnm

+ 1 =
m

wg

∂wg
∂m

+ 1

Egg =
1

wg

∂wg
∂lnpg

− 1 =
pg
wg

∂wg
∂pg

− 1

Egh =
1

wg

∂wg
∂lnph

=
ph
wg

∂wg
∂ph

The Slutsky equation can be written in elasticity form to obtain the compensated (Hicksian)
elasticity of the quantity of good g with respect to the price of good h: Ẽgh = Egŵh + Egh, where
ŵh is the predicted expenditure share for good h. We discuss elasticities in more detail, including
why we use ŵh rather than wh, in [R] demandsys postestimation.

For each demand system, we provide the equations for the gth expenditure share, the direct utility
function (if available), the indirect utility function, the expenditure function (if available), and the
elasticities of the quantity of good g with respect to expenditure and the price of good h. Predicted
values of the first four items are available via predict; the elasticities are available via estat
elasticities. When one demand system is nested within a more general demand system, we
provide the equations for only the more general demand system and note what parameter restrictions
would result in the less general demand system. Moreover, we include demographic variables in
our exposition; versions of models without demographic variables result when the corresponding
parameter vectors and matrices are set to zero. We also note what parameter restrictions are imposed
at estimation to ensure adding up, homogeneity, and Slutsky symmetry.

LES
Let cg = µg +νgd, where νg is the gth row of G×D parameter matrix N. The LES begins with

the utility function
u(q,d;β,µ,N) =

∏
g

(qg − cg)βg

Utility maximization yields the expenditure-share equations

wg(p,m,d;β,µ,N) =
pgcg
m

+ βg

(
1−

∑
h

phch
m

)

To enforce adding up, we impose the constraint
∑
g βg = 1. Slutsky symmetry and homogeneity are

implied by the functional form of the LES model. Straightforward algebra shows the indirect utility
function is

v(p,m,d;β,µ,N) =

∏
g β

βg
g∏

g p
βg
g

(m−
∑
g

pgcg)

and inverting provides the expenditure function

e(p, u,d;β,µ,N) = u

∏
g p

βg
g∏

g β
βg
g

+
∑
g

pgcg

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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The expenditure and uncompensated price elasticities are given by

Eg =
βgm

pgcg + βg (m−
∑
h phch)

Egh =



pgcg(1− βg)

pgcg + βg

(
m−

∑
h

phch

) − 1 g = h

−βgphch

pgcg + βg

(
m−

∑
h

phch

) g 6= h

The Cobb–Douglas demand system results if we set µ = 0. Models without demographics result if
we set N = 0.

Generalized translog

Continuing to use cg = µg + νgd, we can obtain the generalized translog expenditure-share
equations with demographics by first obtaining the regular translog expenditure-share equations
and then applying translation with both a constant term and demographic characteristics to those
expenditure-share equations to obtain

wg(p,m,d;α,Γ,µ,N) =
pgcg
m

+
m

m

αg +
∑
h

γghln
(ph
m

)
1 +

∑
h

∑
j

γhj ln
(pj
m

)
m = m−

∑
j

pjcj

The normalization
∑
g αg = 1 ensures the expenditure shares sum to 1, and Slutsky symmetry requires

that γjh = γhj . Homogeneity is implied by the functional form of the expenditure-share equation.

Noting that the translated indirect utility function has the same form as the untranslated version
except with m replacing m, we have the indirect utility function

lnv(p,m,d;α,Γ,µ,N) = −
∑
g

αgln
(pg
m

)
− 1

2

∑
g

∑
h

γghln
(pg
m

)
ln
(ph
m

)
A limitation of the generalized translog model is that we cannot solve the indirect utility function
for a closed-form expression for the cost function, nor does a closed-form expression for the direct
utility function exist. (The direct utility function described in Christensen, Jorgenson, and Lau [1975]
is not the utility function that is implied by their indirect utility function.)

Demand systems with translated demographics and committed quantities tend to produce elasticity
formulas that are rather long. Omitting function arguments for clarity, we begin by writing the
expenditure-share equation for good g as

wg = Ag +Bg ×
Ng
Dg
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where
Ag =

pgcg
m

Bg =
m

m
= 1−

∑
h phch
m

Ng = αg +
∑
h

γghlnph − ln(m−
∑
h

phch)
∑
h

γgh

Dg = 1 +
∑
j

∑
h

γjhlnph − ln(m−
∑
h

phch)
∑
j

∑
h

γjh

Applying the chain and quotient rules of elementary calculus, we have

∂wg
∂m

=
∂Ag
∂m

+Bg

Dg
∂Ng
∂m

−Ng
∂Dg

∂m
D2
g

+
Ng
Dg

∂Bg
∂m

where
∂Ag
∂m

= −pgcg
m2

∂Bg
∂m

=

∑
h phch
m2

∂Ng
∂m

= − 1

m−
∑
h phch

∑
h

γgh
∂Dg

∂m
= − 1

m−
∑
h phch

∑
j

∑
h

γjh

Given ∂wg/∂m, the expenditure elasticity of good g is calculated as Eg = (m/ŵg)(∂wg/∂m) + 1.
We also have

∂wg
∂ph

=
∂Ag
∂ph

+Bg

Dg
∂Ng
∂ph

−Ng
∂Dg

∂ph
D2
g

+
Ng
Dg

∂Bg
∂ph

where
∂Ag
∂ph

=

{
cg/m h = g
0 h 6= g

∂Bg
∂ph

= −cg
m

∂Ng
∂ph

=
γgh
ch

+
ch

m−
∑
j pjcj

∑
j

γgj

∂Dg

∂ph
=

1

ph

∑
j

γjh +
ch

m−
∑
j pjcj

∑
jk

γjk

Given ∂wg/∂ph, the uncompensated price elasticity of good g with respect to price h is calculated
as Egh = (ph/wg)(∂wg/∂ph) + Ih=g , where Ix is the indicator function that takes on the value one
if x is true and zero otherwise.

The basic translog results if we set µ = 0, and models without demographics have N = 0.
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QUAIDS with demographic translation

Translating Banks, Blundell, and Lewbel’s (1997) indirect utility function, we have

lnV (p,m,d;α0,α,β,Γ,λ,µ,N) =

[{
lnm− lna(p)

b(p)

}−1
+ λ(p)

]−1
lna(p) = α0 +

∑
g

αglnpg +
1

2

∑
g

∑
h

γghlnpglnph

b(p) =
∏
g

pβg
g

λ(p) =
∑
g

λglnpg

where α0 is the value specified in the piconstant() option. Solving for m and recalling that
m = m+

∑
g pgcg for cg = µg + νgd, we have the expenditure function

e(p, u,d;α0,α,β,Γ,λ,µ,N) = exp
{

b(p)lnu
1− λ(p)lnu

+ lna(p)
}
+
∑
g

pgcg (6)

Applying Shepherd’s lemma yields the expenditure-share equations

wg(p,m,d;α0,α,β,Γ,λ,µ,N) =

pgcg
m

+
m

m

(
αg +

∑
h

γghlnph + βgln
{

m

a(p)

}
+

λg
b(p)

[
ln
{

m

a(p)

}]2)
(7)

To obtain the expenditure elasticities, we first write (7) as

wg = Rg + Sg × Tg (8)

where
Rg =

pgcg
m

Sg =
m

m

Tg = αg +
∑
h

γghlnph + βgln
{

m

a(p)

}
+

λg
b(p)

[
ln
{

m

a(p)

}]2
Taking the derivative with respect to lnm, we have

∂wg
∂lnm

=
∂Rg
∂lnm

+ Sg
∂Tg
∂lnm

+ Tg
∂Sg
∂lnm

where
∂Rg
∂lnm

= −pgcg
m

∂Sg
∂lnm

= 1− Sg

∂Tg
∂lnm

=
1

Sg

[
βg + 2

λg
b(p)

ln
{

m

a(p)

}]
Then the expenditure elasticity for good g is given by Eg = (1/wg)(∂wg/∂lnm) + 1.
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To obtain the uncompensated price elasticity of good g with respect to price h, we again use (8).
Taking the partial derivative with respect to lnph, we have

∂wg
∂lnph

=
∂Rg
∂lnph

+ Sg
∂Tg
∂lnph

+ Tg
∂Sg
∂lnph

The required partials are

∂Rg
∂lnph

=

{ phch
m h = g

0 h 6= g

∂Sg
∂lnph

= −phch
m

∂Tg
∂lnph

= γgh + βg
∂

∂lnph

[
ln
{

m

a(p)

}]
+

∂

∂lnph

(
λg
b(p)

[
ln
{

m

a(p)

}]2)

where

∂

∂lnph

[
ln
{

m

a(p)

}]
= −

 phch
m−

∑
j pjcj

+ αh +
∑
j

γhj lnpj


∂

∂lnph

(
λg
b(p)

[
ln
{

m

a(p)

}]2)
= 2

λg
b(p)

ln
{

m

a(p)

}
∂

∂lnph

[
ln
{

m

a(p)

}]

− λgβh
b(p)

[
ln
{

m

a(p)

}2
]

The uncompensated price elasticity of good g with respect to price h is Egh = (ph/wg)(∂wg/∂ph)+
Ih=g .

The AIDS model results if λ = 0. The nongeneralized variants result if µ = 0. The variants
without demographics result if N = 0.

QUAIDS with demographic scaling

As can be gleaned from (6), the expenditure function for a QUAIDS model without any form of
translation or scaling is

e(p, u;α0,α,β,Γ,λ) = exp
{

b(p)lnu
1− λ(p)lnu

+ lna(p)
}

= exp

{
b(p)

1
lnu − λ(p)

+ lna(p)

}

a(p) = α0 +
∑
j

αj lnpj +
1

2

∑
j

∑
k

γjklnpj lnpk

b(p) =
∏
j

p
βj

j

λ(p) =
∑
j

λj lnpj

The AIDS case results when λ = 0, and we obtain the expenditure function given by (2).
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To implement Ray’s (1983) demographic scaling as extended to the QUAIDS case in Poi (2002),
we require a function that can be split into two parts, one part that depends on prices and utility and
one part that does not:

m0(p, u,d) = m0(d) φ(p,d, u)

For m0(d), we use the same function as in Ray,

m0(d;ρ) = 1 + ρ′d

where ρ is a D × 1 parameter vector. For φ(p, δ, u), we follow Poi (2002) and use

φ(p,d, u;β,λ,H) = exp

b(p)
(∏

j p
ηjd

j − 1
)

1
lnu − λ(p)


where ηj is the jth row of G × D parameter matrix H. For AIDS when λ = 0, we are left with
the function used by Ray (1983). The expenditure function for the QUAIDS model with demographic
scaling is then

e(p, u,d;α0,α,β,Γ,λ,ρ,H) = e(p, u;α0,α,β,Γ,λ)×m0(d;ρ)× φ(p,d, u;β,H)

Applying Shepherd’s lemma, we have the share equations

wg(p,m,d;α0,α,β,Γ,λ,ρ,H) =

αg +
∑
h

γghlnph + (βg + ηgd)ln
[

m

m0(d;ρ) a(p)

]
+

λg
b(p) c(p,d)

[
ln
{

m

m0(d;ρ) a(p)

}]2

where the demographic-adjusted price aggregator is defined as c(p,d) ≡
∏
j p

ηjd

j . The indirect
utility function is

lnV (p,m,d;α0,α,β,γ,λ,ρ,H) =

[
b(p) c(p,d)

ln {m−m0(d;ρ)− a(p)}
+ λ(p)

]−1
Because we are not dealing with demographic translation here, the partial derivatives required for

elasticities are not as involved as they are for the QUAIDS model with demographic translation or the
generalized translog model. We have

∂wg
∂lnm

= βg + ηgd +
2λg

b(p) c(p,d)
ln
{

m

(1 + ρ′d) a(p)

}
and

∂wg
∂lnph

= γgh −
[
βg + ηgd +

2λg
b(p) c(p,d)

ln
{

m

(1 + ρ′d) a(p)

}]
×

(
αh +

∑
k

γhklnpk

)

+
(βh + ηhd)λg
b(p) c(p,d)

[
ln
{

m

(1 + ρ′d) a(p)

}]2
The AIDS model with demographic scaling results if λ = 0, and models without demographic scaling
result if ρ = 0 and H = 0.
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Estimation
The expenditure shares of a demand system represent a set of nonlinear seemingly unrelated

regression (SUR) equations. Hence, estimation is performed using nlsur with just one complication.
Our system of equations for observation i and generic parameter vector θ can be written as

w1i = w1(pi,mi,di; θ) + ε1i

w2i = w2(pi,mi,di; θ) + ε2i

... =
...

wGi = wG(pi,mi,di; θ) + εGi

where εi = (ε1i, ε2i, . . . , εGi) is a vector of zero-mean disturbances. Because
∑
g wgi = 1 and by

the construction of our demand systems we also have
∑
g wg(pi,mi,di; θ) = 1, it must be the case

that
∑
g εgi = 0. Therefore, det(Σ) = det {E(εε′)} = 0, and neither the (quasi)maximum likelihood

estimator nor the feasible generalized nonlinear SUR estimator is defined.

Barten (1969) showed that to obtain a well-defined likelihood function, we can drop any one of the
expenditure-share equations and fit the system containing the remaining G− 1 equations. Parameter
restrictions that force the demand system’s equations to sum to 1 can then be used to recover the
parameters of the dropped equation. demandsys drops the final equation from the demand system,
but which equation is dropped should not concern you: Barten (1969) showed that you obtain the
same likelihood function regardless of which one is dropped.

Moreover, the nonlinear SUR model satisfies the so-called Oberhofer–Kmenta (1974) conditions
that allow us to cycle between estimating the parameters θ and the error covariance matrix Σ as
nlsur does when we specify option ifgnls. The upshot is that we fit our expenditure-share equations
by calling nlsur with option ifgnls. The resulting parameter estimate θ̂ is the (quasi)maximum
likelihood estimate of the parameters of our demand system. The (G− 1)× (G− 1) estimated error
covariance matrix is returned in matrix e(Sigma).

Estimation weights, variance–covariance matrix options, and options to control the optimization
process available with demandsys are simply passed to nlsur. See Methods and formulas in [R] nlsur.

When you type predict . . . , shares eq(#), you obtain the predicted shares for the #th equation,
based on the expenditure-share equation for the demand system estimated. By construction, the sum
of predicted shares for each observation is equal to one.

When you type predict . . . , residuals eq(#), you obtain the residuals for the #th equation
defined as r#i = w#i − ŵ#i, where ŵ#i is the predicted share for equation # for observation i.

When you type predict . . . , quantities eq(#), predict first computes the predicted shares
ŵ#i and then computes q̂#i = miŵ#i/p#i.

When you type predict . . . , iuf, predict evaluates the indirect utility function based on the
formulas given above.

When you type predict . . . , ef utilities(u), predict evaluates the expenditure function
based on the formulas given above at the levels of utility specified in variable u.
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